Java Reference
In-Depth Information
Example14.4 For our second example of the shifting method, we solve
n X
i2 i = 1 2 1 + 2 2 2 + 3 2 3 + + n 2 n :
f(n) =
i=1
We can achieve our goal if we multiply by two:
n X
i2 i = 12 2 + 22 3 + 32 4 ++ (n1)2 n + n2 n+1 :
2f(n) = 2
i=1
The ith term of 2f(n) is i 2 i+1 , while the (i + 1)th term of f(n) is
(i + 1) 2 i+1 . Subtracting one expression from the other yields the sum-
mation of 2 i and a few non-canceled terms:
n X
n X
i2 i
i2 i
2f(n) f(n)
=
2
i=1
i=1
n
n
X
X
i2 i+1
i2 i :
=
i=1
i=1
Shift i's value in the second summation, substituting (i + 1) for i:
n X
n X
= n2 n+1 +
i2 i+1
(i + 1)2 i+1 :
i=0
i=0
Break the second summation into two parts:
n X
n X
n X
= n2 n+1 +
i2 i+1
i2 i+1
2 i+1 :
i=0
i=0
i=0
Cancel like terms:
n X
= n2 n+1
2 i+1 :
i=0
Again shift i's value in the summation, substituting i for (i + 1):
n X
= n2 n+1
2 i :
i=1
Replace the new summation with a solution that we already know:
= n2 n+1 2 n+1 2 :
Finally, reorganize the equation:
=
(n 1)2 n+1 + 2:
 
Search WWH ::




Custom Search