Chemistry Reference
In-Depth Information
36. Figliola RS, Beasley DE (2011) Theory and design for mechanical measurements, 5th edn.
Wiley, New York
37. Tokarev I, Minko S (2012) Tunable plasmonic nanostructures from noble metal nanoparticles
and stimuli-responsive polymers. Soft Matter 8(22):5980 - 5987. doi: 10.1039/C2sm25069a
38. Ehrick JD, Deo SK, Browning TW, Bachas LG, Madou MJ, Daunert S (2005) Genetically
engineered protein in hydrogels tailors stimuli-responsive characteristics. Nat Mater 4
(4):298
302. doi: 10.1038/nmat1352
39. Lendlein A, Jiang H, Junger O, Langer R (2005) Light-induced shape-memory polymers.
Nature 434(7035):879
-
882. doi: 10.1038/nature03496
40. Um SH, Lee JB, Park N, Kwon SY, Umbach CC, Luo D (2006) Enzyme-catalysed assembly
of DNA hydrogel. Nat Mater 5(10):797
-
801. doi: 10.1038/nmat1741
41. Ehrbar M, Schoenmakers R, Christen EH, Fussenegger M, Weber W (2008) Drug-sensing
hydrogels for the inducible release of biopharmaceuticals. Nat Mater 7(10):800
-
804. doi: 10.
-
1038/nmat2250
42. Kloxin AM, Kasko AM, Salinas CN, Anseth KS (2009) Photodegradable hydrogels for
dynamic tuning of physical and chemical properties. Science 324(5923):59 - 63. doi: 10.1126/
science.1169494
43. Banwell EF, Abelardo ES, Adams DJ, Ma Birchall, Corrigan A, Donald AM, Kirkland M,
Serpell LC, Butler MF, Woolfson DN (2009) Rational design and application of responsive
alpha-helical peptide hydrogels. Nat Mater 8(7):596 - 600. doi: 10.1038/nmat2479
44. Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, Sukhorukov GB, Szleifer I,
Tsukruk VV, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S (2010) Emerging
applications of stimuli-responsive polymer materials. Nat Mater 9(2):101
113. doi: 10.1038/
-
nmat2614
45. Yetisen AK, Montelongo Y, da Cruz Vasconcellos F, Martinez-Hurtado JL, Neupane S, Butt
H, Qasim MM, Blyth J, Burling K, Carmody JB, Evans M, Wilkinson TD, Kubota LT,
Monteiro MJ, Lowe CR (2014) Reusable, robust, and accurate laser-generated photonic
nanosensor. Nano Lett 14(6):3587
3593. doi: 10.1021/nl5012504
46. Kratz A, Ferraro M, Sluss PM, Lewandrowski KB (2004) Case records of the Massachusetts
general hospital. weekly clinicopathological exercises. laboratory reference values. N Engl J
Med 351(15):1548
-
1563. doi: 10.1056/NEJMcpc049016
47. Simerville JA, Maxted WC, Pahira JJ (2005) Urinalysis: a comprehensive review. Am Fam
Phys 71(6):1153
-
1162
48. Rodr í guez Soriano J (2002) Renal tubular acidosis: the clinical entity. J Am Soc Nephrol 13
(8):2160 - 2170. doi: 10.1097/01.ASN.0000023430.92674.E5
49. Hesse A, Heimbach D (1999) Causes of phosphate stone formation and the importance of
metaphylaxis by urinary acidi cation: a review. World J Urol 17(5):308 - 315
50. Eisner BH, Goldfarb DS, Pareek G (2013) Pharmacologic treatment of kidney stone disease.
Urol clin North Am 40(1):21 - 30. doi: 10.1016/j.ucl.2012.09.013
51. Proudfoot AT, Krenzelok EP, Vale JA (2004) Position paper on urine alkalinization. J Toxicol
Clin Toxicol 42(1):1
-
26. doi: 10.1081/CLT-120028740
52. Brooks T, Keevil CW (1997) A simple artificial urine for the growth of urinary pathogens. Lett
Appl Microbiol 24(3):203
-
206. doi: 10.1046/j.1472-765X.1997.00378.x
53. Kissa E (1969) Urea in reactive dyeing. Text Res
-
J 39(8):734
741. doi: 10.1177/
-
004051756903900805
54. Wencel D, Abel T, McDonagh C (2014) Optical chemical pH sensors. Anal Chem 86
(1):15
29. doi: 10.1021/Ac4035168
55. Walpole GS (1913) The use of litmus paper as a quantitative indicator of reaction. Biochem J 7
(3):260
-
267
56. Bakker E, Qin Y (2006) Electrochemical sensors. Anal Chem 78(12):3965
-
3984. doi: 10.1021/
-
ac060637m
57. Wolfbeis OS (2008) Fiber-optic chemical
sensors and biosensors. Anal Chem 80
(12):4269 - 4283. doi: 10.1021/Ac800473b
Search WWH ::




Custom Search