Chemistry Reference
In-Depth Information
37. Xia JQ, Ying YR, Foulger SH (2005) Electric- eld-induced rejection wavelength tuning of
photonic bandgap composites. Adv Mater 17(20):2463 - 2467. doi: 10.1002/adma.200501166
38. Jeong U, Xia Y (2005) Photonic crystals with thermally switchable stop bands fabricated
from Se@Ag2Se spherical colloids. Angew Chem Int Ed 44(20):3099 - 3103. doi: 10.1002/
anie.200462906
39. Maurer MK, Lednev IK, Asher SA (2005) Photoswitchable spirobenzopyran-based
photochemically controlled photonic crystals. Adv Funct Mater 15(9):1401
1406. doi: 10.
-
1002/adfm.200400070
40. Barry RA, Wiltzius P (2006) Humidity-sensing inverse opal hydrogels. Langmuir 22
(3):1369
1374. doi: 10.1021/la0519094
41. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors:
three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114
(20):10654
-
10696. doi: 10.1021/cr500116a
42. Bjelkhagen HI (1995) Silver-halide recording materials for holography and their processing,
2nd edn. Springer, Heidelberg
43. Saxby G (2004) Practical holography, 3rd edn. Institute of Physics Publishing, London
44. Toal V (2011) Introduction to holography. CRC Press, Boca Raton
45. Bjelkhagen H, Brotherton-Ratcliffe D (2013) Ultra-realistic imaging: advanced techniques in
analogue and digital colour holography. Taylor & Francis, Boca Raton
46. Montelongo Y, Tenorio-Pearl JO, Williams C, Zhang S, Milne WI, Wilkinson TD (2014)
Plasmonic nanoparticle scattering for color holograms. Proc Natl Acad Sci USA 111
(35):12679 - 12683. doi: 10.1073/pnas.1405262111
47. Maxwell JC (1865) A dynamical theory of the electromagnetic field. Philos Trans R Soc
London 155:459
-
512. doi: 10.1098/rstl.1865.0008
48. Zenker W (1868) Lehrbuch der Photochromie (textbook on photochromism). F. Viewag und
Suhn, Berlin
49. Guther R (1999) The Berlin scientist and educator Wilhelm Zenker (1829
-
1899) and the
-
29
50. Hertz H (1893) Electric waves: being researches on the propagation of electric action with
finite velocity through space. Macmillan Publishers, London
51. Wiener O (1890) Stehende Lichtwellen und die Schwingungsrichtung polarisirten Lichtes.
Ann Phys (Berlin, Ger) 276 (6):203
principle of color selection. P Soc Photo-Opt Ins 3738:20
-
243. doi: 10.1002/andp.18902760603
52. Lippmann G (1894) Sur la Theorie de la Photographie des Couleurs Simples et Composees
par la Methode Interferentielle. J Phys 3:97 - 107
53. Bjelkhagen HI (1997) Lippman photographs recorded in DuPont color photopolymer
material, practical holography XI and holographic materials III, vol 3011. SPIE, San Jose
54. Bragg WL (1912) The diffraction of short electromagnetic waves by a crystal. Proc
Cambridge Philos Soc 17:43
55. Wolfke M (1920) Ü ber die M ö glichkeit der optischen Abbildung von Molekulargittern.
Physik Z 21:495 - 497
56. Gabor D (1948) A new microscopic principle. Nature 161(4098):777
-
778
57. Gabor D (1949) Microscopy by reconstructed wave-fronts. Proc R Soc A 197(1051):454
-
487.
-
doi: 10.1098/rspa.1949.0075
58. Einstein A (1917) Zur Quantentheorie der Strahlung (On the quantum theory of radiation).
Physik Z 18:121
128
59. Gould RG (1959) The LASER, light ampli cation by stimulated emission of radiation. In:
Franken PA, Sands RH (eds) The Ann Arbor conference on optical pumping, Ann Arbor,
University of Michigan, p 128
60. Maiman TH (1960) Stimulated optical radiation in ruby. Nature 187(4736):493
-
494
-
61. Denisyuk YN (1962) On the re
ection of optical properties of an object in a wave field of
light scattered by it. Dokl Akad Nauk SSSR 144(6):1275 - 1278
62. Leith EN, Upatnieks J (1962) Reconstructed wavefronts and communication theory. J Opt
Soc Am 52(10):1123 - 1128. doi: 10.1364/JOSA.52.001123
63. Hariharan P (2010) Basics of interferometry. Academic Press, San Diego
fl
Search WWH ::




Custom Search