Chemistry Reference
In-Depth Information
holographic sensors with high control over the entire system, including the size and
distribution of the Ag 0 NPs within hydrogel matrices, one can avoid undesirable
effects such as red-shifted diffraction and wider band gaps.
References
1. Aoki K, Guimard D, Nishioka M, Nomura M, Iwamoto S, Arakawa Y (2008) Coupling of
quantum-dot light emission with a three-dimensional photonic-crystal nanocavity. Nat
Photonics 2(11):688 - 692. doi: 10.1038/nphoton.2008.202
2. Rinne SA, Garcia-Santamaria F, Braun PV (2008) Embedded cavities and waveguides in
three-dimensional silicon photonic crystals. Nat Photonics 2(1):52 - 56. doi: 10.1038/nphoton.
2007.252
3. Takahashi S, Suzuki K, Okano M, Imada M, Nakamori T, Ota Y, Ishizaki K, Noda S (2009)
Direct creation of three-dimensional photonic crystals by a top-down approach. Nat Mater 8
(9):721
725. doi: 10.1038/nmat2507
4. Ishizaki K, Noda S (2009) Manipulation of photons at the surface of three-dimensional
photonic crystals. Nature 460(7253):367
-
370. doi: 10.1038/nature08190
5. Llordes A, Garcia G, Gazquez J, Milliron DJ (2013) Tunable near-infrared and visible-light
transmittance in nanocrystal-in-glass composites. Nature 500(7462):323
-
326. doi: 10.1038/
-
nature12398
6. Kolle M, Lethbridge A, Kreysing M, Baumberg JJ, Aizenberg J, Vukusic P (2013) Bio-
inspired band-gap tunable elastic optical multilayer bers. Adv Mater 25(15):2239
2245.
-
doi: 10.1002/adma.201203529
7. Yablonovitch E (2001) Photonic crystals: semiconductors of light. Sci Am 285(6):47
51,
-
45
8. Krauss TF (2003) Photonic crystals cavities without leaks. Nat Mater 2(12):777 - 778.
doi: 10.1038/Nmat1026
9. Akahane Y, Asano T, Song BS, Noda S (2003) High-Q photonic nanocavity in a two-
dimensional photonic crystal. Nature 425(6961):944 - 947. doi: 10.1038/nature02063
10. Norris DJ (2007) Photonic crystals. A view of the future. Nat Mater 6(3):177 - 178. doi: 10.
1038/nmat1844
11. Lin SY, Fleming JG, Hetherington DL, Smith BK, Biswas R, Ho KM, Sigalas MM,
Zubrzycki W, Kurtz SR, Bur J (1998) A three-dimensional photonic crystal operating at
infrared wavelengths. Nature 394(6690):251
54
-
253. doi: 10.1038/28343
12. Noda S, Tomoda K, Yamamoto N, Chutinan A (2000) Full three-dimensional photonic
bandgap crystals at near-infrared wavelengths. Science 289(5479):604
-
606. doi: 10.1126/
-
science.289.5479.604
13. Birner A, Wehrspohn RB, Gosele UM, Busch K (2001) Silicon-based photonic crystals. Adv
Mater 13(6):377
388. doi: 10.1002/1521-4095(200103)13:6<377:Aid-Adma377>3.0.Co;2-X
14. Wanke MC, Lehmann O, Muller K, Wen Q, Stuke M (1997) Laser rapid prototyping of
photonic band-gap microstructures. Science 275(5304):1284
-
1286. doi: 10.1126/science.275.
-
5304.1284
15. Campbell M, Sharp DN, Harrison MT, Denning RG, Turber eld AJ (2000) Fabrication of
photonic crystals for the visible spectrum by holographic lithography. Nature 404
(6773):53 - 56. doi: 10.1038/35003523
16. Xia YN, Gates B, Yin YD, Lu Y (2000) Monodispersed colloidal spheres: old materials with
new applications. Adv Mater 12(10):693 - 713. doi: 10.1002/(Sici)1521-4095(200005)12:
10<693:Aid-Adma693>3.0.Co;2-J
17. Zhao YJ, Zhao XW, Gu ZZ (2010) Photonic crystals in bioassays. Adv Funct Mater 20
(18):2970
2988. doi: 10.1002/adfm.201000098
-
Search WWH ::




Custom Search