Chemistry Reference
In-Depth Information
66. Zhang J-T, Wang L, Luo J, Tikhonov A, Kornienko N, Asher SA (2011) 2-D Array photonic
crystal sensing motif. J Am Chem Soc 133(24):9152 - 9155. doi: 10.1021/ja201015c
67. Choi Y, Park Y, Kang T, Lee LP (2009) Selective and sensitive detection of metal ions by
plasmonic resonance energy transfer-based nanospectroscopy. Nat Nanotechnol 4(11):
742 - 746. doi: 10.1038/Nnano.2009.258
68. Wu C-S, Khaing Oo MK, Fan X (2010) Highly sensitive multiplexed heavy metal detection
using
quantum-dot-labeled DNAzymes. ACS Nano
4(10):5897
5904.
doi: 10.1021/
-
nn1021988
69. Lee J, Jun H, Kim J (2009) Polydiacetylene-liposome microarrays for selective and sensitive
mercury(ii) detection. Adv Mater 21(36):3674
3677. doi: 10.1002/adma.200900639
70. Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh KM, Flechsig
G-U, Wang J (2009) Chemical sensing based on catalytic nanomotors: motion-based detection
of trace silver. J Am Chem Soc 131(34):12082
-
12083. doi: 10.1021/ja905142q
71. Zhou Y, Wang S, Zhang K, Jiang X (2008) Visual detection of copper(II) by azide- and
alkyne-functionalized gold nanoparticles using click chemistry. Angew Chem 47(39):
7454 - 7456. doi: 10.1002/anie.200802317
72. Zhang T, Cheng Z, Wang Y, Li Z, Wang C, Li Y, Fang Y (2010) Self-assembled
1-octadecanethiol monolayers on graphene for mercury detection. Nano Lett 10(11):
4738 - 4741. doi: 10.1021/nl1032556
73. Sudibya HG, He Q, Zhang H, Chen P (2011) Electrical detection of metal ions using field-
effect transistors based on micropatterned reduced graphene oxide films. ACS Nano 5(3):
1990 - 1994. doi: 10.1021/nn103043v
74. Liu Y, Dong X, Chen P (2012) Biological and chemical sensors based on graphene materials.
Chem Soc Rev 41(6):2283
-
2307. doi: 10.1039/c1cs15270j
75. Kang Y, Walish JJ, Gorishnyy T, Thomas EL (2007) Broad-wavelength-range chemically
tunable block-copolymer photonic gels. Nat Mater 6(12):957
-
960. doi: 10.1038/nmat2032
76. Aguirre CI, Reguera E, Stein A (2010) Tunable colors in opals and inverse opal photonic
crystals. Adv Funct Mater 20(16):2565
-
2578. doi: 10.1002/adfm.201000143
77. Galisteo-Lopez JF, Ibisate M, Sapienza R, Froufe-Perez LS, Blanco A, Lopez C (2011) Self-
assembled photonic structures. Adv Mater 23(1):30
-
69. doi: 10.1002/adma.201000356
78. von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic
crystals. Chem Soc Rev 42(7):2528
-
2554. doi: 10.1039/c2cs35309a
79. Deng S, Yetisen AK, Jiang K, Butt H (2014) Computational modelling of a graphene Fresnel
lens on different substrates. RSC Adv 4(57):30050 - 30058. doi: 10.1039/C4ra03991b
80. Kong X-T, Butt H, Yetisen AK, Kangwanwatana C, Montelongo Y, Deng S, Da Cruz
Vasconcellos F, Qasim MM, Wilkinson TD, Dai Q (2014) Enhanced reflection from inverse
tapered nanocone arrays. Appl Phys Lett 105(5):053108. doi: 10.1063/1.4892580
81. Martinez-Hurtado JL, Davidson CA, Blyth J, Lowe CR (2010) Holographic detection of
hydrocarbon gases and other volatile organic compounds. Langmuir 26(19):15694 - 15699.
doi: 10.1021/la102693m
82. Naydenova I, Jallapuram R, Toal V, Martin S (2008) A visual indication of environmental
humidity using a color changing hologram recorded in a self-developing photopolymer. Appl
Phys Lett 92(3):031109. doi: 10.1063/1.2837454
83. Vasconcellos FD, Yetisen AK, Montelongo Y, Butt H, Grigore A, Davidson CAB, Blyth J,
Monteiro MJ, Wilkinson TD, Lowe CR (2014) Printable surface holograms via laser ablation.
ACS Photonics 1(6):489
-
495. doi: 10.1021/Ph400149m
84. Yetisen AK, Jiang L, Cooper JR, Qin Y, Palanivelu R, Zohar Y (2011) A microsystem-based
assay for studying pollen tube guidance in plant reproduction. J Micromech Microeng 21
(5):054018. doi: 10.1088/0960-1317/21/5/054018
85. Yetisen AK, Naydenova I, Vasconcellos FC, Blyth J, Lowe CR (2014) Holographic sensors:
three-dimensional analyte-sensitive nanostructures and their applications. Chem Rev 114
(20):10654 - 10696. doi: 10.1021/cr500116a
-
Search WWH ::




Custom Search