Chemistry Reference
In-Depth Information
28. Aragay G, Pons J, Merkoci A (2011) Recent trends in macro-, micro-, and nanomaterial-based
tools and strategies for heavy-metal detection. Chem Rev 111(5):3433 - 3458. doi: 10.1021/
cr100383r
29. Jung JH, Lee JH, Shinkai S (2011) Functionalized magnetic nanoparticles as chemosensors
and adsorbents for toxic metal ions in environmental and biological fields. Chem Soc Rev 40
(9):4464
4474. doi: 10.1039/C1cs15051k
30. Kim HN, Ren WX, Kim JS, Yoon J (2012) Fluorescent and colorimetric sensors for detection
of
-
lead, cadmium, and mercury ions. Chem Soc Rev 41(8):3210
3244. doi: 10.1039/
-
C1cs15245a
31. Albelda MT, Frias JC, Garcia-Espana E, Schneider HJ (2012) Supramolecular complexation
for environmental control. Chem Soc Rev 41(10):3859
3877. doi: 10.1039/c2cs35008d
32. Dudev T, Lim C (2014) Competition among metal ions for protein binding sites: determinants
of metal ion selectivity in proteins. Chem Rev 114(1):538
-
556. doi: 10.1021/Cr4004665
33. Bings NH, Bogaerts A, Broekaert JA (2010) Atomic spectroscopy: a review. Anal Chem
82(12):4653
-
4681. doi: 10.1021/ac1010469
34. Profrock D, Prange A (2012) Inductively coupled plasma-mass spectrometry (ICP-MS) for
quantitative analysis in environmental and life sciences: a review of challenges, solutions, and
trends. Appl Spectrosc 66(8):843 - 868. doi: 10.1366/12-06681
35. Liu R, Wu P, Yang L, Hou X, Lv Y (2013) Inductively coupled plasma mass spectrometry-
based immunoassay: a review. Mass Spectrom Rev 9999:1 - 21. doi: 10.1002/mas.21391
36. Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, Nunez C (2010) Light
and colour as analytical detection tools: a journey into the periodic table using polyamines to
bio-inspired systems as chemosensors. Chem Soc Rev 39(8):2948
-
2976. doi: 10.1039/
-
B819787n
37. Zhao Q, Li F, Huang C (2010) Phosphorescent chemosensors based on heavy-metal
complexes. Chem Soc Rev 39(8):3007
3030. doi: 10.1039/b915340c
38. Bobacka J, Ivaska A, Lewenstam A (2008) Potentiometric ion sensors. Chem Rev 108
(2):329
-
351. doi: 10.1021/cr068100w
39. Dimeski G, Badrick T, St John A (2010) Ion selective electrodes (ISEs) and interferences-A
review. Clinica Chimica Acta 411(5
-
317. doi: 10.1016/j.cca.2009.12.005
40. Volpatti LR, Yetisen AK (2014) Commercialization of micro
6):309
fl
uidic devices. Trends
350. doi: 10.1016/j.tibtech.2014.04.010
41. Wegner SV, Okesli A, Chen P, He C (2007) Design of an emission ratiometric biosensor from
MerR family proteins: a sensitive and selective sensor for Hg 2+ . J Am Chem Soc 129
(12):3474 - 3475. doi: 10.1021/ja068342d
42. Huang CC, Yang Z, Lee KH, Chang HT (2007) Synthesis of highly fluorescent gold
nanoparticles for sensing mercury(II). Angew Chem 46(36):6824 - 6828. doi: 10.1002/anie.
200700803
43. Nolan EM, Lippard SJ (2007) Turn-on and ratiometric mercury sensing in water with a red-
emitting probe. J Am Chem Soc 129(18):5910
Biotechnol 32(7):347
-
5918. doi: 10.1021/ja068879r
44. Zhang XA, Lovejoy KS, Jasanoff A, Lippard SJ (2007) Water-soluble porphyrins as a dual-
function molecular imaging platform for MRI and
-
fl
fluorescence zinc sensing. Proc Natl Acad
10785. doi: 10.1073/pnas.0702393104
45. Cheng T, Xu Y, Zhang S, Zhu W, Qian X, Duan L (2008) A highly sensitive and selective
OFF-ON
Sci USA 104(26):10780
-
fluorescent sensor for cadmium in aqueous solution and living cell. J Am Chem Soc
130(48):16160
fl
16161. doi: 10.1021/ja806928n
46. Taki M, Desaki M, Ojida A, Iyoshi S, Hirayama T, Hamachi I, Yamamoto Y (2008)
Fluorescence imaging of intracellular cadmium using a dual-excitation ratiometric
chemosensor. J Am Chem Soc 130(38):12564
-
12565. doi: 10.1021/Ja803429z
47. Zhang XA, Hayes D, Smith SJ, Friedle S, Lippard SJ (2008) New strategy for quantifying
biological zinc by a modi ed zinpyr
-
fluorescence sensor. J Am Chem Soc 130(47):
15788 - 15789. doi: 10.1021/ja807156b
Search WWH ::




Custom Search