Civil Engineering Reference
In-Depth Information
Now, from Eqs (16.28) and (16.30)
θ B
10 v 1
2
×
2 . 5 EI
10
3
M AB =−
12 . 5
(i)
2 θ B
10 v 1
2
×
2 . 5 EI
10
3
M BA =−
+
12 . 5
(ii)
In Eqs (i) and (ii) we are assuming that the displacement, v 1 ,
is to the right.
Furthermore
2 EI
20 (2 θ B +
M BC =−
θ C )
100
(iii)
2 EI
20 (2 θ C + θ B )
M CB =−
+
100
(iv)
2 θ C +
10 v 1
2
×
2 . 5 EI
10
3
M CD =−
θ D +
(v)
2 θ D +
10 v 1
2
×
2 . 5 EI
10
3
M DC =−
θ C +
(vi)
From the equilibrium of the member end moments at the joints
M BA +
M BC =
0 M CB +
M CD
54
=
0 M DC =
0
Substituting in the equilibrium equations for M BA , M BC , etc., from Eqs (i)-(vi) we
obtain
1 . 25 EI θ B +
0 . 1 EI θ C
0 . 15 EI v 1 +
87 . 5
=
0
(vii)
1 . 2 EI θ C +
0 . 1 EI θ B +
0 . 5 EI θ C +
0 . 15 EI v 1
46
=
0
(viii)
EI θ D +
0 . 5 EI θ C +
0 . 15 EI v 1 =
0
(ix)
Since there are four unknown displacements we require a further equation for a solu-
tion. This may be obtained by considering the overall horizontal equilibrium of the
frame. Thus
S AB +
S DC
10
=
0
in which, from Eq. (16.29)
6
×
2 . 5 EI
10 2
12
×
2 . 5 EI
10 3
S AB =
θ B
v 1 +
5
where the last term on the right-hand side is S AB (
=+
5 kN), the contribution of the
10 kN horizontal load to S AB . Also
6
×
2 . 5 EI
10 2
12
×
2 . 5 EI
10 3
S DC =
( θ D +
θ C )
v 1
Hence, substituting for S AB and S DC in the equilibrium equations, we have
EI θ B +
EI θ D +
EI θ C
0 . 4 EI v 1
33 . 3
=
0
(x)
 
Search WWH ::




Custom Search