Civil Engineering Reference
In-Depth Information
and
sin 2 θ
2
π
2 τ xy
( σ x
+
=
σ y ) 2
4 τ xy
+
cos 2 θ
2
( σ x
σ y )
π
+
=
( σ x
σ y ) 2
4 τ xy
+
Rewriting Eq. (14.5) as
σ x
2 (1
σ y
2 (1
σ n =
+
cos 2 θ )
+
cos 2 θ )
τ xy sin 2 θ
and substituting for
{
sin 2 θ , cos 2 θ
}
and
{
sin 2( θ
+
π/ 2), cos 2( θ
+
π/ 2)
}
in turn gives
( σ x
σ x +
σ y
1
2
σ I =
+
σ y ) 2
+
4 τ xy
(14.8)
2
( σ x σ y ) 2
σ x +
σ y
1
2
σ II =
+
4 τ xy
(14.9)
2
where σ I is the maximum or major principal stress and σ II is the minimum or minor
principal stress ; σ I is algebraically the greatest direct stress at the point while σ II is
algebraically the least. Note that when σ II is compressive, i.e. negative, it is possible
for σ II to be numerically greater than σ I .
From Eq. (14.6)
d τ
d θ =
( σ x
σ y ) cos 2 θ
2 τ xy sin 2 θ
=
0
giving
( σ x
σ y )
2 τ xy
tan 2 θ
=
(14.10)
It follows that
( σ x
σ y )
sin 2 θ
=
( σ x
σ y ) 2
+
4 τ xy
2 τ xy
cos 2 θ
=
( σ x
σ y ) 2
4 τ xy
+
sin 2 θ
2
( σ x
π
σ y )
+
=−
( σ x
σ y ) 2
4 τ xy
+
cos 2 θ
2
2 τ xy
( σ x σ y ) 2
π
+
=−
+
4 τ xy
Substituting these values in Eq. (14.6) gives
( σ x
1
2
σ y ) 2
4 τ xy
τ max,min
+
(14.11)
 
Search WWH ::




Custom Search