Chemistry Reference
In-Depth Information
132. K. E. Riley, J. Vondrasek, and P. Hobza, Phys. Chem. Chem. Phys. , 9 , 5555 (2007).
Performance of the DFT-D Method, Paired with the PCM Implicit Solvation Model, for
the Computation of Interaction Energies of Solvated Complexes of Biological Interest.
133. O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. Lett. , 93 ,
153004 (2004). Optimization of Effective Atom Centered Potentials for London Dispersion
Forces in Density Functional Theory.
134. O. A. von Lilienfeld, I. Tavernelli, U. Rothlisberger, and D. Sebastiani, Phys. Rev. B , 71 ,
195119 (2005). Performance of Optimized Atom-Centered Potentials for Weakly Bonded
Systems Using Density Functional Theory.
135. M. Dion, H. Rydberg, E. Schr¨ der, D. C. Langreth, and B. I. Lundqvist, Phys. Rev. Lett. , 92 ,
246401 (2004). van der Waals Density Functional for General Geometries.
136. A. Puzder, M. Dion, and D. C. Langreth, J. Chem. Phys. , 124 , 164105 (2006). Binding
Energies in Benzene Dimers: Nonlocal Density Functional Calculations.
137. T. Thonhauser, A. Puzder, and D. C. Langreth, J. Chem. Phys. , 124 , 164106 (2006).
Interaction Energies of Monosubstituted Benzene Dimers via Nonlocal Density Functional
Theory.
138. A. D. Becke and E. R. Johnson, J. Chem. Phys. , 123 , 154101 (2005). A Density-Functional
Model of the Dispersion Interaction.
139. E. R. Johnson and A. D. Becke, J. Chem. Phys. , 123 , 024101 (2005). A Post-Hartree-Fock
Model of Intermolecular Interactions.
140. A. D. Becke and E. R. Johnson, J. Chem. Phys. , 124 , 014104 (2006). Exchange-Hole Dipole
Moment and the Dispersion Interaction: High-Order Dispersion Coefficients.
141. R. Podeszwa and K. Szalewicz, Chem. Phys. Lett. , 412 , 488 (2005). Accurate Interaction
Energies for Argon, Krypton, and Benzene Dimers from Perturbation Theory Based on the
Kohn-Sham Model.
142. A. Heßelmann, G. Jansen, and M. Sch¨ tz, J. Chem. Phys. , 122 , 014103 (2005). Density-
Functional Theory-Symmetry-Adapted Intermolecular Perturbation Theory with Density
Fitting: A New Efficient Method to Study Intermolecular Interaction Energies.
143. X. Xu and W. A. Goddard III, Proc. Natl. Acad. Sci. USA , 101 , 2673 (2003). The X3LYP
Extended Density Functional for Accurate Descriptions of Nonbond Interactions, Spin
States, and Thermochemical Properties.
144. Y. Zhao and D. G. Truhlar, J. Phys. Chem. A , 109 , 5656 (2005). Design of Density Functionals
That Are Broadly Accurate for Thermochemistry, Thermochemical Kinetics, and Non-
bonded Interactions.
145. Y. Zhao, N. E. Schultz, and D. G. Truhlar, J. Chem. Theory Comput. , 2 , 364 (2006). Design of
Density Functionals by Combining the Method of Constraint Satisfaction with Parame-
trization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions.
146. Y. Zhao and D. G. Truhlar, J. Chem. Theory Comput. , 3 , 289 (2007). Density Functionals for
Noncovalent Interaction Energies of Biological Importance.
147. D. ˇ eha, M. Kabel ´ˇ ,F.Ryj ´ˇ ek, J. ˇ poner, J. E. ˇ poner, M. Elstner, S. Suhai, and P. Hobza,
J. Am. Chem. Soc. , 124 , 3366 (2002). Intercalators. 1. Nature of Stacking Interactions Between
Intercalators (Ethidium, Daunomycin, Ellipticine, and 4 0 ,6-Diaminide-2-phenylindole) and
DNA Base Pairs. Ab Initio Quantum Chemical, Density Functional Theory, and Empirical
Potential Study.
148. A. T. Macias and A. D. MacKerell Jr., J. Comput. Chem. , 26 , 1452 (2005). CH/pi Interactions
Involving Aromatic Amino Acids: Refinement of the CHARMM Tryptophan Force Field.
149. G. A. Kaminski, H. A. Stern, B. J. Berne, and R. A. Friesner, J. Phys. Chem. A , 108 , 621 (2004).
Development of an Accurate and Robust Polarizable Molecular Mechanics Force Field from
Ab Initio Quantum Chemistry.
150. A. G. Donchev, N. G. Galkin, L. B. Pereyaslavets, and V. I. Tarasov, J. Chem. Phys. , 125 ,
244107 (2006). Quantum Mechanical Polarizable Force Field (QMPFF3): Refinement and
Validation of the Dispersion Interaction for Aromatic Carbon.
Search WWH ::




Custom Search