Chemistry Reference
In-Depth Information
50. F. B. van Duijneveldt, J. G. C. M. van Duijneveldt-van de Rijdt, and J. H. van Lenthe, Chem.
Rev. , 94 , 1873 (1994). State of the Art in Counterpoise Theory.
51. T. H. Dunning, J. Phys. Chem. A , 104 , 9062 (2000). A Road Map for the Calculation of
Molecular Binding Energies.
52. K. R. Liedl, J. Chem. Phys. , 108 , 3199 (1998). Dangers of Counterpoise Corrected Hyper-
surfaces. Advantages of Basis Set Superposition Improvement.
53. A. Halkier, W. Klopper, T. Helgaker, P. Jørgensen, and P. R. Taylor, J. Chem. Phys. , 111 ,
9157 (1999). Basis Set Convergence of the Interaction Energy of Hydrogen-Bonded
Complexes.
54. D. Hankins, J. W. Moskowitz, and F. H. Stillinger, J. Chem. Phys. , 53 , 4544 (1970). Water
Molecule Interactions.
55. V. M. Ray ´ n and J. A. Sordo, Theor. Chem. Acc. , 99 , 68 (1998). On the Validity of the
Counterpoise Correction for the Basis Set Superposition Error Including the Fragment
Relaxation Terms.
56. L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys. , 94 , 7221
(1991). Gaussian-2 Theory for Molecular Energies of First- and Second-Row Compounds.
57. L. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. ,
109 , 7764 (1998). Gaussian-3 (G3) Theory for Molecules Containing First and Second-
Row Atoms.
58. A. Karton, E. Rabinovich, J. M. L. Martin, and B. Ruscic, J. Chem. Phys. , 125 , 144108 (2006).
W4 Theory for Computational Thermochemistry: In Pursuit of Confident Sub-kJ/mol
Predictions.
59. A. L. L. East andW. D. Allen, J. Chem. Phys. , 99 , 4638 (1993). The Heat of Formation of NCO.
60. A. G. Cs ´ sz ´ r, W. D. Allen, and H. F. Schaefer III, J. Chem. Phys. , 108 , 9751 (1998). In Pursuit
of the Ab Initio Limit for Conformational Energy Prototypes.
61. M. O. Sinnokrot and C. D. Sherrill, J. Phys. Chem. A , 108 , 10200 (2004). Highly Accurate
Coupled Cluster Potential Energy Curves for Benzene Dimer: The Sandwich, T-Shaped, and
Parallel-Displaced Configurations.
62. T. Janowski and P. Pulay, Chem. Phys. Lett. , 447 , 27 (2007). High Accuracy Benchmark
Calculations on the Benzene Dimer Potential Energy Surface.
63. T. H. Dunning, J. Chem. Phys. , 90 , 1007 (1989). Gaussian Basis Sets for Use in Correlated
Molecular Calculations. I. The Atoms Boron Through Neon and Hydrogen.
64. T. P. Tauer and C. D. Sherrill, J. Phys. Chem. A , 109 , 10475 (2005). Beyond the Benzene
Dimer: An Investigation of the Additivity of
Interactions.
65. B. Mintz, K. P. Lennox, and A. K. Wilson, J. Chem. Phys. , 121 , 5629 (2004). Truncation of the
Correlation Consistent Basis Sets: An Effective Approach to the Reduction of Computational
Cost?
66. C. D. Sherrill and T. Takatani, manuscript in preparation.
67. B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. , 94 , 1887 (1994). Perturbation
Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes.
68. O. Vahtras, J. Alml ¨ f, and M. Feyereisen, Chem. Phys. Lett. , 213 , 514 (1993). Integral
Approximations for LCAO-SCF Calculations.
69. M. Feyereisen, G. Fitzgerald, and A. Komornicki, Chem. Phys. Lett. , 208 , 359 (1993). Use of
Approximate Integrals in Ab Initio Theory. An Application in MP2 Calculations.
70. H.-J. Werner, F. R. Manby, and P. J. Knowles, J. Chem. Phys. , 118 , 8149 (2003). Fast Linear
Scaling Second-Order Møller-Plesset Perturbation Theory (MP2) Using Local and Density
Fitting Approximations.
71. F. Weigend, Phys. Chem. Chem. Phys. , 4 , 4285 (2002). A Fully Direct RI-HF Algorithm:
Implementation, Optimized Auxiliary Basis Sets, Demonstration of Accuracy and Efficiency.
72. F. Weigend, A. K ¨ hn, and C. H ¨ ttig, J. Chem. Phys. , 116 , 3175 (2002). Efficient Use of the
Correlation Consistent Basis Sets in Resolution of the Identity MP2 Calculations.
p
-
p
Search WWH ::




Custom Search