Chemistry Reference
In-Depth Information
94. D. A. McQuarrie, Statistical Mechanics , University Science Books, Sausalito, CA, 2000.
95. Z. H. Hu and C. J. Margulis, Proc. Nat. Acad. Sci., U.S.A. , 103 , 831 (2006). Heterogeneity in a
Room Temperature Ionic Liquid: Persistent Local Environments and the Red-Edge Effect.
96. Z. H. Hu and C. J. Margulis, Proc. Nat. Acad. Sci., U.S.A. , 104 , 9546 (2007). Heterogeneity in
a Room Temperature Ionic Liquid: Persistent Local Environments and the Red-Edge Effect.
Corrigendum: [ 103 , 831 (2006)].
97. P. Mandal, M. Sarkar, and A. Samanta, J. Phys. Chem. A , 108 , 9048 (2004). Excitation-
Wavelength-Dependent Fluorescence Behavior of Some Dipolar Molecules in Room Tem-
perature Ionic Liquids.
98. A. Paul, P. K. Mandal, and A. Samanta, J. Phys. Chem. B , 109 , 9148 (2005). On the Optical
Properties of the Imidazolium Ionic Liquids.
99. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids , Oxford University Press
Oxford, 1987.
100. S. M. Urahata and M. C. C. Ribeiro, J. Chem. Phys. , 122 , 024511 (2005). Single Particle
Dynamics in Ionic Liquids of 1-Alkyl-3-methylimidazolium Cations.
101. H. A. Every, A. G. Bishop, D. R. MacFarlane, G. Oradd, and M. Forsyth, Phys. Chem.
Chem. Phys. , 6 , 1758 (2004). Transport Properties in a Family of Dialklyimidazolium
Ionic Liquids.
102. B. Hess, J. Chem. Phys. , 116 , 209 (2002). Determining the Shear Viscosity of Model Liquids
from Molecular Dynamics Simulations.
103. B. L. Bhargava and S. Balasubramanian, J. Chem. Phys. , 123 , 144505 (2005). Dynamics in a
Room Temperature Ionic Liquid: A Computer Simulation Study.
104. S. U. Lee, J. Jung, and Y.-K. Han, Chem. Phys. Lett. , 406 , 332 (2005). Molecular Dynamics
Study of the Ionic Conductivity of 1- n -Butyl-3-methylimidazolium Salts as Ionic Liquids.
105. T. Umecky, M. Kanakubo, and Y. Ikushima, Fluid. Phase Equil. , 228-229 , 329 (2005). Self-
Diffusion Coefficients of 1-Butyl-3-methylimidazolium Hexafluorophosphate with Pulsed-
Field Gradient Spin-Echo NMR Technique.
106. M. Kanakubo, K. R. Harris, N. Tsuchihashi, K. Ibuki, and M. Ueno, J. Phys. Chem. B , 111 ,
2062 (2007). Effect of Pressure on Transport Properties of the Ionic Liquid 1-Butyl-3-
methylimidazolium Hexafluorophosphate.
107. C. Rey-Castro and L. F. Vega, J. Phys. Chem. B , 110 , 14426 (2006). Transport Properties of
the Ionic Liquid 1-Ethyl-3-methylimidazolium Chloride from Equilibrium Molecular
Dynamics Simulation. The Effect of Temperature.
108. M. Vladkov and J. L. Barrat, Macromol. Theory Simulat. , 15 , 252 (2006). Linear and
Nonlinear Viscoelasticity of a Model Unentangled Polymer Melt.
109. O. Borodin and G. D. Smith, J. Phys. Chem. B , 110 , 11481 (2006). Structure and Dynamics of
N -Methyl- N -propylpyrrolidinium Bis(trifluoromethanesulfonyl)imide Ionic Liquid from
Molecular Dynamics Simulations.
110. I. Nicotera, C. Oliviero, W. A. Henderson, G. B. Appetecchi, and S. Passerini, J. Phys. Chem.
B , 109 , 22814 (2005). NMR Investigation of Ionic Liquid-LiX Mixtures: Pyrrolidinium
Cations and TFSI Anions.
111. B. L. Bhargava and S. Balasubramanian, J. Chem. Phys. , 127 , 114510 (2007). Refined
Potential Model for Atomistic Simulations of Ionic Liquid [bmim][PF 6 ].
112. D. J. Evans and G. P. Morriss, Statistical Mechanics of Nonequilibrium Liquids , Academic,
London, 1990.
113. P. T. Cummings and D. J. Evans, Ind. Eng. Chem. Res. , 31 , 1237 (1992). Nonequilibrium
Molecular Dynamics Approaches to Transport Properties and Non-Newtonian Fluid Rheol-
ogy.
114. M. M. Zhang, E. Lussetti, L. E. S. de Souza, and F. M¨ ller-Plathe, J. Phys. Chem. B , 109 ,
15060 (2005). Thermal Conductivities of Molecular Liquids by Reverse Nonequilibrium
Molecular Dynamics.
Search WWH ::




Custom Search