Chemistry Reference
In-Depth Information
12. B. J. Alder and T. E. Wainwright, J. Chem. Phys. , 31 , 459 (1959). Studies in Molecular
Dynamics. I. General Method.
13. B. J. Alder and T. E. Wainwright, Phys. Rev. , 127 , 359 (1962). Phase Transition in Elastic
Disks.
14. A. Rahman, Phys. Rev. , 136 , A405 (1964). Correlations in the Motion of Atoms in Liquid
Argon.
15. L. Verlet, Phys. Rev. , 159 , 98 (1967). Computer ''Experiments'' on Classical Fluids. I.
Thermodynamical Properties of Lennard-Jones Molecules.
16. M. L. Huggins and J. E. Mayer, J. Chem. Phys. , 1 , 643 (1933). Interatomic Distances in
Crystals of the Alkali Halides.
17. J. E. Mayer, J. Chem. Phys. , 1 , 270 (1933). Dispersion and Polarizability and the van derWaals
Potential in the Alkali Halides.
18. M. P. Tosi and F. G. Fumi, J. Phys. Chem. Solids , 25 , 31 (1964). Ionic Sizes and Born Repulsive
Parameters in the NaCl-Type Alkali Halides. I.
19. M. J. Sangster and M. Dixon, Adv. Phys. , 25 , 247 (1976). Interionic Potentials in Alkali
Halides and Their Use in Simulations of the Molten Salts.
20. C. Valeriani, E. Sanz, and D. Frenkel, J. Chem. Phys. , 122 , 194501 (2005). Rate of
Homogenous Crystal Nucleation in Molten NaCl.
21. E. Sanz and C. Vega, J. Chem. Phys. , 126 , 014507 (2007). Solubility of KF and NaCl in Water
by Molecular Simulation.
22. N. Galamba, C. A. Nieto de Castro, and J. F. Ely, J. Phys. Chem. B. , 108 , 3658 (2004).
Molecular Dynamics Simulation of the Shear Viscosity of Molten Alkali Halides.
23. N. Galamba, C. A. Nieto de Castro, and J. F. Ely, J. Chem. Phys. , 120 , 8676 (2004). Thermal
Conductivity of Molten Alkali Halides from Equilibrium Molecular Dynamics Simulations.
24. N. Galamba, C. A. Nieto de Castro, and J. F. Ely, J. Chem. Phys. , 122 , 22450, (2005). Shear
Viscosity of Molten Alkali Halides from Equilibrium and Nonequilibrium Molecular-
Dynamics Simulations.
25. D. M. Eike, J. F. Brennecke, and E. J. Maginn, J. Chem. Phys. , 122 , 014115 (2005). Toward a
Robust and General Molecular Simulation Method for Computing Solid-Liquid Coexis-
tence.
26. J. Akella, S. N. Vaidya, and G. C. Kennedy, Phys. Rev. , 185 , 1135 (1969). Melting of Sodium
Chloride at Pressures to 65 kbar.
27. E. Hawlicka and T. Dlugoborski, Chem. Phys. Lett. , 268 , 325 (1997). Molecular Dynamics
Simulations of the Aqueous Solution of Tetramethylammonium Chloride.
28. J. Oberbrodhage, Phys. Chem. Chem. Phys. , 2 , 129 (2000). Phase Transfer Catalysts Between
Polar and Non-Polar Media: A Molecular Dynamics Simulation of Tetrabutylammonium
Iodide at the Formamide / Hexane Interface.
29. J. Sun, M. Forsyth, and D. R. MacFarlane, J. Phys. Chem. B , 102 , 8858 (1998). Room
Temperature Molten Salts Based on the Quaternary Ammonium Ion.
30. C. G. Hanke, S. L. Price, and R. M. Lynden-Bell, Mol. Phys. , 99 , 801 (2001). Intermolecular
Potentials for Simulations of Liquid Imidazolium Salts.
31. D. E. Williams and S. R. Cox, Acta Crystallogr. B , 40 , 404 (1984). Nonbonded Potentials for
Azahydrocarbons—The Importance of the Coulombic Interaction.
32. A. J. Stone and M. Alderton, Mol. Phys. , 56 , 1047 (1985). Distributed Multipole Analysis—
Methods and Applications.
33. L. -Y. Hsu and D. E. Williams, Acta Crystallogr. A , 36 , 277 (1980). Intermolecular Potential
Function Models for Crystalline Perchlorohydrocarbons.
34. D. E. Williams and D. J. Houpt, Acta Crystallogr. B , 42 , 286 (1986). Fluorine Nonbound
Potential Parameters Derived from Crystalline Perfluorocarbons.
35. W. Smith and T. R. Forester, J. Mol. Graphics , 14 , 136 (1996). DL_POLY 2.0. A General-
Purpose Parallel Molecular Dynamics Simulation Package.
Search WWH ::




Custom Search