Chemistry Reference
In-Depth Information
111. R. Elber, A. Roitberg, C. Simmerling, R. Goldstein, H. Y. Li, G. Verkhivker, C. Keasar,
J. Zhang, and A. Ulitsky, Comput. Phys. Commun. , 91 , 159 (1995). Moil—A Program for
Simulations of Macromolecules.
112. R. Elber, J. Chem. Phys. , 93 , 4312 (1990). Calculation of the Potential of Mean Force Using
Molecular Dynamics with Linear Constraints: An Application to a Conformational Transi-
tion in a Solvated Dipeptide.
113. R. Czerminsky and R. Elber, J. Chem. Phys. , 92 , 5580 (1990). Reaction Path Study of
Conformational Transitions in Flexible Systems: Application to Peptides.
114. V. Zaloj and R. Elber, Comput. Phys. Commun. , 128 , 118 (2000). Parallel Computations of
Molecular Dynamics Trajectories Using the Stochastic Path Approach.
115. A. F. Voter, F. Montalenti, and T. C. Germann, Annu. Rev. Mat. Res. , 32 , 321 (2002).
Extending the Time Scale in Atomistic Simulation of Materials.
116. S. Izrailev, S. Stepaniants, B. Isralewitz, D. Kosztin, H. Lu, F. Molnar, W. Wriggers, and K.
Schulten, in Computational Molecular Dynamics: Challenges , Methods , Ideas , P. Deuflhard,
J. Hermans, B. Leimkuhler, A. E. Mark, S. Reich, and R. D. Skeel, Eds., Springer, Berlin,
1998, pp. 39-65. Steered Molecular Dynamics.
117. J. Schlitter, M. Engels, P. Kruger, E. Jacoby, and A. Wollmer, Mol. Sim. , 10 , 291 (1993). A
Targeted Molecular Dynamics Simulation of Conformational Change: Application to the
T
R Transition in Insulin.
118. A. E. Cardenas, unpublished work, 2007.
119. F. Pitici and R. Elber, in Biophysical Society 50th Annual Meeting , Biophysical Society, Salt
Lake City, Utah, 2006, p. 51. Computer Simulations of Folding of Cytochrome C Variants.
120. W. H. Press, B. P. Flannery, S. A. Teukosky, and W. T. Vetterling, Numerical Recipes.
Cambridge University Press, Cambridge, UK, 1986.
121. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. , 14 , 33 (1996). VMD: Visual
Molecular Dynamics.
122. V. Tsui and D. A. Case, Biopolymers , 56 , 275 (2000). Theory and Applications of the
Generalized Born Solvation Model in Macromolecular Simulations.
123. G. D. Hawkins, C. J. Cramer, and D. G. Truhlar, Chem. Phys. Lett. , 246 , 122 (1995). Pairwise
Solute Descreening of Solute Charges from a Dielectric Medium.
124. S. Sato, T. L. Religa, V. Daggett, and A. R. Fersht, Proc. Natl. Acad. Sci. U.S.A. , 101 , 6952
(2004). Testing Protein-Folding Simulations by Experiment: B Domain of Protein A.
125. P. G. Wolynes, Proc. Natl. Acad. Sci. U.S.A. , 101 , 6837 (2004). Latest Folding Game Results:
Protein A Barely Frustrates Computationalists.
126. K. Arora and T. Schlick, Chem. Phys. Lett. , 378 , 1 (2003). Deoxyadenosine Sugar Puckering
Pathway Simulated by the Stochastic Difference Equation Algorithm.
127. K. Arora and T. Schlick, J. Phys. Chem. B , 109 , 5358 (2005). Conformational Transition
Pathway of Polymerase beta/DNA upon Binding Correct Incoming Substrate.
128. W. Lim and Y. P. Feng, Biopolymers , 78 , 107 (2005). Applying the Stochastic
Difference Equation to DNA Conformational Transitions: A Study of B-Z and B-A DNA
Transitions.
129. A. E. Cardenas and R. Elber, Proteins: Struct. , Funct. , Genet. , 51 , 245 (2003). Kinetics of
Cytochrome c Folding: Atomically Detailed Simulations.
130. H. Roder, G. A. Elove, and S. W. Englander, Nature , 335 , 700 (1988). Structural Characteriza-
tion of Folding Intermediates in Cytochrome c by H-Exchange Labeling and Proton NMR.
131. G. A. Elove, A. F. Chaffotte, H. Roder, and M. E. Goldberg, Biochemistry , 31 , 6876 (1992).
Early Steps in Cytochrome-c Folding Probed by Time-Resolved Circular-Dichroism and
Fluorescence Spectroscopy.
132. L. Pollack, M. W. Tate, N. C. Darnton, J. B. Knight, S. M. Gruner, W. A. Eaton, and R. H.
Austin, Proc. Natl. Acad. Sci. U.S.A. , 96 , 10115 (1999). Compactness of the Denatured State
of a Fast-Folding Protein Measured by Submillisecond Small-Angle X-Ray Scattering.
$
Search WWH ::




Custom Search