Chemistry Reference
In-Depth Information
45. Q. Ma and J. A. Izaguirre, in Proceedings of the 2003 ACM Symposium on Applied
Computing , ACM, 2003, pp. 178-182. Long Time Step Molecular Dynamics Using
Targeted Langevin Stabilization.
46. R. D. Skeel and J. A. Izaguirre, Mol. Phys. , 100 , 3885 (2002). An Impulse Integrator for
Langevin Dynamics.
47. J. A. Izaguirre, in Multiscale Computational Methods in Chemistry and Physics , A. Brandt,
K. Binder, and J. Bernholc, Eds., IOS Press, Amsterdam, 2001, Vol. 177, pp. 34-47.
Langevin Stabilization of Multiscale Mollified Molecular Dynamics.
48. T. Schlick and L. Yang, in Multiscale Computational Methods in Chemistry and Physics ,
A. Brandt, J. Bernholc, and K. Binder, Eds., Amsterdam, 2001, Vol. 177, pp. 293-305. Long-
Timestep Biomolecular Dynamics Simulations: Ln Performance on a Polymerase Beta / DNA
System.
49. L. Greengard and V. Rokhlin, J. Comput. Phys. , 73 , 325 (1987). A Fast Algorithm for Particle
Simulations.
50. A. W. Appel, SIAM J. Sci. Stat. Comput. , 6 , 85 (1985). An Efficient Program for Many-Body
Simulations.
51. J. Barnes and P. Hut, Nature , 324 , 446 (1986). A Hierarchical O ( N log N ) Force Calculation
Algorithm.
52. Z.-H. Duan and R. Krasny, J. Comput. Chem. , 21 , 1 (2000). An Adaptive Treecode for
Computing Nonbonded Potential Energy in Classical Molecular Systems.
53. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. , 98 , 10089 (1993). Particle Mesh Ewald:
An N *log( N ) Method for Computing Ewald Sums.
54. Z.-H. Duan and R. Krasny, J. Chem. Phys. , 113 , 3492 (2000). An Ewald Summation Based
Multipole Method.
55. R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles , McGraw-Hill,
New York, 1981.
56. P. Procacci and M. Marchi, J. Chem. Phys. , 104 , 3003 (1996). Taming the Ewald Sum in
Molecular Dynamics Simulations of Solvated Proteins via a Multiple Time Step Algorithm.
57. X. Qian and T. Schlick, J. Chem. Phys. , 116 , 5971 (2002). Efficient Multiple Timestep
Integrators with Distance-Based Force Splitting for Particle-Mesh-Ewald Molecular
Dynamics Simulations.
58. D. Barash, L. Yang, X. Qian, and T. Schlick, J. Comput. Chem. , 24 , 77 (2003). Inherent
Speedup Limitations in Multiple Timestep Particle Mesh Ewald Algorithms.
59. T. Hansson, C. Oostenbrink, and W. F. van Gunsteren, Curr. Opin. Struct. Biol. , 12 , 190
(2002). Molecular Dynamics Simulations.
60. M. Karplus, Acc.Chem. Res. , 35 , 321 (2002).MolecularDynamics Simulations of Biomolecules.
61. M. Karplus and J. Kuriyan, Proc. Natl. Acad. Sci. U.S.A. , 102 , 6679 (2005). Molecular
Dynamics and Protein Function.
62. P. G. Bolhuis, D. Chandler, C. Dellago, and P. L. Geissler, Annu. Rev. Phys. Chem. , 53 , 291
(2002). Transition Path Sampling: Throwing Ropes over Rough Mountain Passes, in the
Dark.
63. P. G. Bolhuis, C. Dellago, and D. Chandler, Faraday Discuss. , 421 (1998). Sampling
Ensembles of Deterministic Transition Pathways.
64. T. S. van Erp, D. Moroni, and P. G. Bolhuis, J. Chem. Phys. , 118 , 7762 (2003). A Novel Path
Sampling Method for the Calculation of Rate Constants.
65. P. G. Bolhuis, Proc. Natl. Acad. Sci. U.S.A. , 100 , 12129 (2003). Transition-Path Sampling of
Beta-Hairpin Folding.
66. T. S. van Erp and P. G. Bolhuis, J. Comput. Phys. , 205 , 157 (2005). Elaborating Transition
Interface Sampling Methods.
67. P. G. Bolhuis, J. Phys.: Condens. Mat. , 15 , S113 (2003). Transition Path Sampling on Diffusive
Barriers.
Search WWH ::




Custom Search