Chemistry Reference
In-Depth Information
4. J. P. Ryckaert, G. Ciccotti, and H. J. C. Berendsen, J. Comput. Phys. , 23 , 327 (1977).
Numerical Integration of the Cartesian Equations of Motion of a System with Constraints:
Molecular Dynamics of n-Alkanes.
5. J. A. McCammon, B. R. Gelin, and M. Karplus, Nature , 267 , 585 (1977). Dynamics of Folded
Proteins.
6. R. D. Ruth, IEEE Trans. Nucl. Sci. , 30 , 2669 (1983). A Canonical Integration Technique.
7. G. Benettin and A. Giorgilli, J. Statist. Phys. , 74 , 1117 (1994). On the Hamiltonian Inter-
polation of near-to-the Identity Symplectic Mappings with Application to Symplectic
Integration Algorithms.
8. E. Hairer, Ann. Numer. Math. , 1 , 107 (1994). Backward Analysis of Numerical Integrators
and Symplectic Methods.
9. J. M. Sanz-Serna and M. P. Calvo, Numerical Hamiltonian Problems , Chapman and Hall,
London, 1994.
10. R. J. Loncharich, B. R. Brooks, and R. W. Pastor, Biopolymers , 21 , 523 (1992). Langevin
Dynamics of Peptides: The Frictional Dependence of Isomerization Rates of N -Acetylalanyl-
N 0 -Methylamide.
11. A. Brunger, C. L. Brooks, and M. Karplus, Chem. Phys. Lett. , 105 , 495 (1982). Stochastic
Boundary Conditions for Molecular Dynamics Simulations of ST2 Water.
12. B. R. Brooks, R. E. Bruccoleri, B. D. Olafson, D. J. States, S. Swaminathan, and M. Karplus,
J. Comput. Chem. , 4 , 187 (1983). CHARMM: A Program for Macromolecular Energy,
Minimization, and Dynamics Calculations.
13. A. D. MacKerell Jr., D. Bashford, M. Bellott, R. L. Dunbrack Jr., J. Evanseck, M. J. Field,
S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph, L. Kuchnir, K. Kuczera, F. T. K. Lau, C. Mattos,
S. Michnick, T. Ngo, D. T. Nguyen, B. Prodhom, W. E. Reiher III, B. Roux, M. Schlenkrich,
J. Smith, R. Stote, J. Straub, M. Watanabe, J. Wiorkiewicz-Kuczera, D. Yin, andM. Karplus,
J. Phys. Chem. , 102 , 3586 (1998). An All-Atom Empirical Potential for Molecular Modeling
and Dynamics Studies of Proteins.
14. S. J. Weiner, P. A. Kollman, D. T. Nguyen, and D. A. Case, J. Comput. Chem. , 7 , 230 (1986).
An All Atom Force Field for Simulations of Proteins and Nucleic Acids.
15. W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz Jr., D. M. Ferguson, D. C.
Spellmeyer, T. Fox, J. W. Caldwell, and P. A. Kollman, J. Am. Chem. Soc. , 117 , 5179 (1995).
A Second Generation Force Field for the Simulation of Proteins and Nucleic Acids.
16. W. L. Jorgensen and J. Tirado-Rives, J. Am. Chem. Soc. , 1988 , 1657 (1988). The OPLS
Potential Functions for Proteins. Energy Minimization for Crystals of Cyclic Peptides and
Crambin.
17. J. P. Bowen and N. L. Allinger, in Reviews in Computational Chemistry , K. B. Lipkowitz and
D. B. Boyd, Eds., VCH, Weinheim, 1991, Vol. 2, pp. 81-97. Molecular Mechanics: The Art
and Science of Parameterization.
18. U. Dinur and A. T. Hagler, in Reviews in Computational Chemistry , K. B. Lipkowitz and
D. B. Boyd, Eds., VCH, Weinheim, 1991, Vol. 2, pp. 99-164. New Approaches to Empirical
Force Fields.
19. C. R. Landis, D. M. Root, and T. Cleveland, in Reviews in Computational Chemistry ,K.B.
Lipkowitz and D. B. Boyd, Eds., VCH, Weinheim, 1995, Vol. 6, pp. 73-148. Molecular
Mechanics Force Fields for Modeling Inorganic and Organometallic Compounds.
20. S. L. Price, in Reviews in Computational Chemistry , K. B. Lipkowitz and D. B. Boyd, Eds.,
Wiley-VCH, New York, 2000, Vol. 14, pp. 225-289. Towards More Accurate Intermo-
lecular Potentials for Organic Molecules.
21. E. Barth, B. Leimkuhler, and S. Reich, Lecture Notes in Computational Science and Engineer-
ing , 24 , 73 (2002). A Test Set for Molecular Dynamics.
22. T. Schlick, in Reviews in Computational Chemistry , K. B. Lipkowitz and D. B. Boyd, Eds.,
VCH, Weinheim, 1992, Vol. 3, pp. 1-71. Optimization Methods in Computational
Chemistry.
Search WWH ::




Custom Search