Chemistry Reference
In-Depth Information
193. P. Ordejon, Phys. Stat. Sol. B , 217 , 335-356 (2000). Linear Scaling Ab Initio Calculations in
Nanoscale Materials with SIESTA.
194. E. Tsuchida and M. Tsukada, Phys. Rev. B , 54 , 7602-7605 (1996). Adaptive Finite-Element
Method for Electronic-Structure Calculations.
195. E. Tsuchida and M. Tsukada, J. Phys. Soc. Jpn. , 67 , 3844-3858 (1998). Large-Scale
Electronic-Structure Calculations Based on the Adaptive Finite-Element Method.
196. E. Tsuchida, J. Chem. Phys. , 121 , 4740-4746 (2004). Ab Initio Molecular-Dynamics Study of
Liquid Formamide.
197. E. Tsuchida, J. Phys. Soc. Jpn. , 76 , 034708 (2007). Augmented Orbital Minimization Method
for Linear Scaling Electronic Structure Calculations.
198. P. Havu, V. Havu, M. J. Puska, and R. M. Nieminen, Phys. Rev. B , 69 , 115325 (2004).
Nonequilibrium Electron Transport in Two-Dimensional Nanostructures Modeled Using
Green's Functions and the Finite-Element Method.
199. G. Lu, E. B. Tadmor, and E. Kaxiras, Phys. Rev. B , 73 , 024108 (2006). From Electrons to
Finite Elements: A Concurrent Multiscale Approach for Metals.
200. E. Lidorikis, M. E. Bachlechner, R. K. Kalia, A. Nakano, P. Vashishta, and G. Z. Voyiadjis,
Phys. Rev. Lett. , 87 , 086104 (2001). Coupling Length Scales for Multiscale Atomistics-
Continuum Simulations: Atomistically Induced Stress Distributions in Si/Si3N4 Nano-
pixels.
201. S. Ogata, E. Lidorikis, F. Shimojo, A. Nakano, P. Vashishta, and R. K. Kalia, Comput. Phys.
Commun. , 138 , 143-154 (2001). Hybrid Finite-Element/Molecular-Dynamics/Electronic-
Density-Functional Approach to Materials Simulations on Parallel Computers.
202. S. Yamakawa and S. Hyodo, Phys. Rev. B , 71 , 035113 (2005). Gaussian Finite-Element
Mixed-Basis Method for Electronic Structure Calculations.
203. M. Aichinger and E. Krotscheck, Comput. Mater. Sci. , 34 , 188-212 (2005). A Fast Config-
uration Space Method for Solving Local Kohn-Sham Equations.
204. E. R. Hernandez, S. Janecek, M. Kaczmarski, and E. Krotscheck, Phys. Rev. B , 75 , 075108
(2007). Evolution-Operator Method for Density Functional Theory.
205. F. Shimojo, R. K. Kalia, A. Nakano, and P. Vashishta, Comput. Phys. Commun. , 167 , 151-
164 (2005). Embedded Divide-and-Conquer Algorithm on Hierarchical Real-Space Grids:
Parallel Molecular Dynamics Simulation Based on Linear-Scaling Density Functional
Theory.
206. A. Nakano, R. K. Kalia, K. Nomura, A. Sharma, P. Vashishta, F. Shimojo, A. C. T. van Duin,
W. A. Goddard, R. Biswas, and D. Srivastava, Comput. Mater. Sci. , 38 , 642-652 (2007). A
Divide-and-Conquer/Cellular-Decomposition Framework for Million-to-Billion Atom
Simulations of Chemical Reactions.
207. P. D. Haynes, C. K. Skylaris, A. A. Mostofi, and M. C. Payne, Phys. Stat. Sol. B , 243 , 2489-
2499 (2006). ONETEP: Linear-Scaling Density-Functional Theory with Local Orbitals and
Plane Waves.
208. L. Seijo and Z. Barandiaran, J. Chem. Phys. , 121 , 6698-6709 (2004). Parallel, Linear-Scaling
Building-Block and Embedding Method Based on Localized Orbitals and Orbital-Specific
Basis Sets.
209. T. Ozaki and H. Kino, J. Chem. Phys. , 121 , 10879-10888 (2004). Variationally Optimized
Basis Orbitals for Biological Molecules.
210. T. Ozaki, Phys. Rev. B , 67 , 115108 (2003). Variationally Optimized Atomic Orbitals for
Large-Scale Electronic Structures.
211. H. S. Lee andM. E. Tuckerman, J. Chem. Phys. , 126 , 164501 (2007). Dynamical Properties of
Liquid Water from Ab Initio Molecular Dynamics Performed in the Complete Basis Set
Limit.
212. J. A. Morrone, K. E. Hasllinger, and M. E. Tuckerman, J. Phys. Chem. B , 110 , 3712-3720
(2006). Ab Initio Molecular Dynamics Simulation of the Structure and Proton Transport
Dynamics of Methanol-Water Solutions.
Search WWH ::




Custom Search