Chemistry Reference
In-Depth Information
132. J. D. Madura, J. M. Briggs, R. C. Wade, M. E. Davis, B. A. Luty, A. Ilin, J. Antosiewicz, M. K.
Gilson, B. Bagheri, L. R. Scott, and J. A. McCammon, Comput. Phys. Commun. , 91 , 57-95
(1995). Electrostatics and Diffusion of Molecules in Solution: Simulations with the Uni-
versity of Houston Brownian Dynamics Program.
133. W. L. Briggs and J. Antosiewicz, in Reviews in Computational Chemistry , K. B. Lipkowitz and
D. B. Boyd, Eds., Wiley-VCH, New York, 1999, Vol. 13, pp. 249-311. Simulation of pH-
Dependent Properties of Proteins Using Mesoscopic Models.
134. N. A. Baker, in Reviews in Computational Chemistry , K. B. Lipkowitz, R. Larter, and T. R.
Cundari, Eds., Wiley-VCH, Hoboken, NJ, 2005, Vol. 21, pp. 349-379. Biomolecular
Applications of Poisson-Boltzmann Methods.
135. S. Tomac and A. Graslund, J. Comput. Chem. , 19 , 893-901 (1998). Multi-Multigrid Solution
of Modified Poisson-Boltzmann Equation for Arbitrarily Shaped Molecules.
136. R. D. Coalson and A. Duncan, J. Chem. Phys. , 97 , 5653-5661 (1992). Systematic Ionic
Screening Theory of Macroions.
137. R. D. Coalson, A. M. Walsh, A. Duncan, and N. Bental, J. Chem. Phys. , 102 , 4584-4594
(1995). Statistical-Mechanics of a Coulomb Gas with Finite-Size Particles—A Lattice Field-
Theory Approach.
138. R. D. Coalson and A. Duncan, J. Phys. Chem. , 100 , 2612-2620 (1996). Statistical Mechanics
of a Multipolar Gas: A Lattice Field Theory Approach.
139. S. F. Edwards and A. Lenard, J. Math. Phys. , 3 , 778-792 (1962). Exact Statistical Mechanics
of a One-Dimensional System with Coulomb Forces. II. The Method of Functional Integra-
tion.
140. J. G. Kirkwood, J. Chem. Phys. , 2 , 767-781 (1934). On the Theory of Strong Electrolyte
Solutions.
141. J. G. Kirkwood and J. C. Poirier, J. Phys. Chem. , 58 , 591-596 (1954). The Statistical
Mechanical Basis of the Debye-H¨ ckel Theory of Strong Electrolytes.
142. R. D. Coalson and T. L. Beck, in Encyclopedia of Computational Chemistry , P. von Rague
Schleyer, Ed., Wiley, New York, 1998, pp. 2086-2100. Numerical Methods for Solving
Poisson and Poisson-Boltzmann Type Equations.
143. M. Holst and F. Saied, J. Comput. Chem. , 14 , 105-113 (1993). Multigrid Solution of the
Poisson-Boltzmann Equation.
144. M. Holst, R. E. Kozack, F. Saied, and S. Subramaniam, J. Biomol. Struct. Dyn. , 11 , 1437-1445
(1994). Protein Electrostatics—Rapid Multigrid-Based Newton Algorithm for Solution of
the Full Nonlinear Poisson-Boltzmann Equation.
145. M. Holst, R. E. Kozack, F. Saied, and S. Subramaniam, Proteins: Struct. , Funct. , Gen. , 18 ,
231-245 (1994). Treatment of Electrostatic Effects in Proteins—Multigrid-Based Newton
Iterative Method for Solution of the Full Nonlinear Poisson-Boltzmann Equation.
146. M. Holst, R. E. Kozack, F. Saied, and S. Subramaniam, Biophys. J. , 66 , A130-A130 (1994).
Multigrid-Based Newton Iterative Method for Solving the Full Nonlinear Poisson-Boltz-
mann Equation.
147. M. J. Holst and F. Saied, J. Comput. Chem. , 16 , 337-364 (1995). Numerical-Solution
of the Nonlinear Poisson-Boltzmann Equation—Developing More Robust and Efficient
Methods.
148. S. Tsonchev, R. D. Coalson, A. P. Liu, and T. L. Beck, J. Chem. Phys. , 120 , 9817-9821 (2004).
Flexible Polyelectrolyte Simulations at the Poisson-Boltzmann Level: A Comparison of the
Kink-Jump and Multigrid Configurational-Bias Monte Carlo Methods.
149. R. E. Alcouffe, A. Brandt, J. E. Dendy, and J. W. Painter, SIAM J. Sci. Stat. Comput. , 2 , 430-
454 (1981). TheMulti-GridMethod for the Diffusion Equationwith Strongly Discontinuous
Coefficients.
150. R. D. Coalson and M. G. Kurnikova, IEEE Trans. Nanobiosci. , 4 , 81-93 (2005). Poisson-
Nernst-Planck Theory Approach to the Calculation of Current through Biological Ion
Channels.
Search WWH ::




Custom Search