Chemistry Reference
In-Depth Information
87. F. Gygi and G. Galli, Phys. Rev. B , 52 , R2229-R2232 (1995). Real-Space Adaptive-Coordinate
Electronic-Structure Calculations.
88. N. A. Modine, G. Zumbach, and E. Kaxiras, Phys. Rev. B , 55 , 10289-10301 (1997).
Adaptive-Coordinate Real-Space Electronic-Structure Calculations for Atoms, Molecules,
and Solids.
89. F. Gygi, Phys. Rev. B , 48 , 11692-11700 (1993). Electronic-Structure Calculations in Adaptive
Coordinates.
90. J. L. Fattebert and J. Bernholc, Phys. Rev. B , 62 , 1713-1722 (2000). Towards Grid-Based
O(N) Density-Functional Theory Methods: Optimized Nonorthogonal Orbitals and Multi-
grid Acceleration.
91. W. Kohn, Phys. Rev. Lett. , 76 , 3168-3171 (1996). Density Functional and Density Matrix
Method Scaling Linearly with the Number of Atoms.
92. S. Goedecker, Rev. Mod. Phys. , 71 , 1085-1123 (1999). Linear Scaling Electronic Structure
Methods.
93. R. Faller, in Reviews in Computational Chemistry , K. B. Lipkowitz and T. R. Cundari, Eds.,
Wiley, Hoboken, NJ, 2007, Vol. 23, pp. 233-262. Coarse-Grain Modeling of Polymers.
94. W. G. Noid, J. W. Chu, G. S. Ayton, and G. A. Voth, J. Phys. Chem. B , 111 , 4116-4127
(2007). Multiscale Coarse-Graining and Structural Correlations: Connections to Liquid-
State Theory.
95. J. Zhou, I. F. Thorpe, S. Izvekov and G. A. Voth, Biophys. J. , 92, 4289-4303 (2007). Coarse-
Grained Peptide Modeling Using a Systematic Multiscale Approach.
96. J. W. Chu, S. Izveko, and G. A. Voth, Mol. Simul. , 32 , 211-218 (2006). The Multiscale
Challenge for Biomolecular Systems: Coarse-Grained Modeling.
97. D. Bai and A. Brandt, in Multiscale Computational Methods in Chemistry and Physics ,A.
Brandt, J. Bernholc, and K. Binder, Eds., IOS Press, Amsterdam, 2000, pp. 250-266.
Multiscale Computation of Polymer Models.
98. B. D. Reddy, Introductory Functional Analysis with Applications to Boundary Value Problems
and Finite Elements , Springer, Heidelberg, 1998.
99. K. W. Morton and D. F. Mayers, Numerical Solution of Partial Differential Equations , 2nd
ed., Cambridge University Press, Cambridge, UK, 2005.
100. R. W. Hamming, Numerical Methods for Scientists and Engineers , Dover, New York, 1962.
101. L. Pauling and E. B. Wilson, Introduction to Quantum Mechanics with Applications to
Chemistry , Dover, New York, 1935.
102. S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Elements , Springer,
Heidelberg, 1994.
103. T. J. R. Hughes, The Finite Element Method: Linear Static and Dynamic Finite Element
Analysis , Dover, Mineola, NY, 2000.
104. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C ,
2nd ed., Cambridge University Press, Cambridge, UK, 1992.
105. W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid Tutorial , 2nd ed., SIAM,
Philadelphia, 2000.
106. A. Brandt, S. McCormick, and J. Ruge, SIAM J. Sci. Stat. Comput. , 4 , 244-260 (1983).
Multigrid Algorithms for Differential Eigenproblems.
107. A. Brandt, Math. Comput. , 31 , 333-390 (1977). Multi-level Adaptive Solutions to Boundary-
Value Problems.
108. A. Brandt, Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics ,
Gesellschaft fur Mathematik und Datenverarbeitung, Bonn, 1984.
109. W. Hackbusch, Multi-grid Methods and Applications , Springer, New York, 1985.
110. R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules , Oxford
University Press, New York, 1989.
Search WWH ::




Custom Search