Chemistry Reference
In-Depth Information
105. A. W. Sandvik and D. J. Scalapino, Phys. Rev. Lett. , 72 , 2777 (1994). Order-Disorder
Transition in a Two-Layer Quantum Antiferromagnet.
106. L. Wang, K. S. D. Beach, and A. W. Sandvik, Phys. Rev. B , 73 , 014431 (2006). High-Precision
Finite-Size Scaling Analysis of the Quantum Critical Point of S
¼
1
=
2 Heisenberg Anti-
ferromagnetic Bilayers.
107. A. W. Sandvik, Phys. Rev. B , 66 , 024418 (2002). Classical Percolation Transition in the
Diluted Two-Dimensional S
2 Heisenberg Antiferromagnet.
108. L. Wang and A. W. Sandvik, Phys. Rev. Lett. , 97 , 117204 (2006). Low-Energy Dynamics of
the Two-Dimensional S
¼
1
=
2 Heisenberg Antiferromagnet on Percolating Clusters.
109. R. Yu, T. Roscilde, and S. Haas, Phys. Rev. Lett. , 94 , 197204 (2005). Quantum Percolation in
Two-Dimensional Antiferromagnets.
110. M. Greiner, O. Mandel, T. Esslinger, T. W. H ¨ nsch, and I. Bloch, Nature , 415 , 39 (2002).
Quantum Phase Transition from a Superfluid to a Mott Insulator in a Gas of Ultracold
Atoms.
111. V. A. Kashurnikov, N. V. Prokof'ev, and B. V. Svistunov , Phys. Rev. A , 66 , 031601(R) (2002).
Revealing the Superfluid-Mott-Insulator Transition in an Optical Lattice.
112. M. Troyer and U.-J. Wiese, Phys. Rev. Lett. , 94 , 170201 (2005). Computational Complexity
and Fundamental Limitations in Fermionic Quantum Monte Carlo Simulations.
113. D. Ceperley and B. J. Alder, Phys. Rev. Lett. , 45 , 566 (1980). Ground State of the Electron Gas
by a Stochastic Method.
114. R. Blankenbecler, D. J. Scalapino, and R. L. Sugar, Phys. Rev. D , 24 , 2278 (1981).
Monte Carlo Calculations for Coupled Boson-Fermion Systems. I.
115. J. Hubbard, Phys. Rev. Lett. , 3 , 77 (1959). Calculation of Partition Functions.
116. J. E. Hirsch, Phys. Rev. Lett. , 51 , 1900 (1983). Monte Carlo Study of the Two-Dimensional
Hubbard Model.
117. R. T. Scalettar, E. Y. Loh, J. E. Gubernatis, A. Moreo, S. R. White, D. J. Scalapino, R. L. Sugar,
and E. Dagotto, Phys. Rev. Lett. , 62 , 1407 (1989). Phase Diagram of the Two-Dimensional
Negative-U Hubbard Model.
118. A. Moreo and D. J. Scalapino, Phys. Rev. Lett. , 66 , 946 (1991). Two-Dimensional Negative-U
Hubbard Model.
119. T. Paiva, R. R. dos Santos, R.T. Scalettar, and P. J. H. Denteneer, Phys. Rev. B , 69 , 184501
(2004). Critical Temperature for the Two-Dimensional Attractive Hubbard Model.
120. A. Sewer, X. Zotos, and H. Beck, Phys. Rev. B , 66 , 140504(R) (2002). QuantumMonte Carlo
Study of the Three-Dimensional Attractive Hubbard Model.
121. S. Chandrasekharan and U.-J. Wiese, Phys. Rev. Lett. , 83 , 3116 (1999). Meron-Cluster
Solution of Fermion Sign Problems.
122. J.-W. Lee, S. Chandrasekharan, and H. U. Baranger, Phys. Rev. B , 72 , 024525 (2005).
Quantum Monte Carlo Study of Disordered Fermions.
123. H. von L ¨ hneysen, A. Rosch, M. Vojta, and P. W ¨ lfle, Rev. Mod. Phys. , 79 , 1015 (2007).
Fermi-Liquid Instabilities at Magnetic Quantum Phase Transitions.
124. S. R. White, Phys. Rev. Lett. , 69 , 2863 (1992). Density Matrix Formulation for Quantum
Renormalization Groups.
125. U. Schollw ¨ ck, Rev. Mod. Phys. , 77 , 259 (2005). The DensityMatrix Renormalization Group.
126. A. Drzewinski and J. M. J. van Leeuwen, Phys. Rev. B , 49 , 403 (1994). Renormalization of the
Ising Model in a Transverse Field.
127. ¨ . Legeza and G. Fath, Phys. Rev. B , 53 , 14349 (1996). Accuracy of the Density-Matrix
Renormalization-Group Method.
128. M. Andersson, M. Boman, and S. O ¨ stlund, Phys. Rev. B , 59 , 10493 (1999). Density-Matrix
Renormalization Group for a Gapless System of Free Fermions.
¼
1
=
Search WWH ::




Custom Search