Chemistry Reference
In-Depth Information
171. A. Pudzianowski, J. Phys. Chem. , 100 , 4781 (1996). A Systematic Appraisal of Density
Functional Methodologies for Hydrogen Bonding in Binary Ionic Complexes.
172. M. Meot-Ner(Mautner), Chem. Rev. , 105 , 213 (2005). The Ionic Hydrogen Bond.
173. S. Sirois, E. I. Proynov, D. T. Nguyen, and D. R. Salahub, J. Chem. Phys. , 107 , 6770 (1997).
Hydrogen-Bonding in Glycine and Malonaldehyde: Performance of the Lap1 Correlation Func-
tional.
174. Y. Zhao and D. Truhlar, J. Phys. Chem. A , 108 , 6908 (2004). HybridMeta Density Functional
Theory Methods for Thermochemistry, Thermochemical Kinetics, and Noncovalent Inter-
actions: TheMPW1B95 andMPWB1KModels and Comparative Assessments for Hydrogen
Bonding and van der Waals Interactions.
175. J. Sponer, P. Jurecka, and P. Hobza, J. Am. Chem. Soc. , 126 , 10142 (2004). Accurate
Interaction Energies of Hydrogen-Bonded Nucleic Acid Base Pairs.
176. J. ˇ ern ´ and P. Hobza, Phys. Chem. Chem. Phys. , 7 , 1624 (2005). The X3LYP Extended
Density Functional Accurately Describes H-Bonding But Fails Completely for Stacking.
177. Y. Zhao, N. Schultz, and D. Truhlar, J. Chem. Theo. Comput. , 2 , 364 (2006). Design of
Density Functionals by Combining the Method of Constraint Satisfaction with Parame-
trization for Thermochemistry, Thermochemical Kinetics, and Noncovalent Interactions.
178. J. Su, X. Xu, and W. Goddard, J. Phys. Chem. A , 108 , 10518 (2004). Accurate Energies and
Structures for Large Water Clusters Using the X3LYP Hybrid Density Functional.
179. E. Dahlke and D. Truhlar, J. Phys. Chem. B , 109 , 15677 (2005). Improved Density Func-
tionals for Water.
180. J. Ireta, J. Neugebauer, andM. Scheffler, J. Phys. Chem. A , 108 , 5692 (2004). On the Accuracy
of DFT for Describing Hydrogen Bonds: Dependence on the Bond Directionality.
181. S. M. Cybulski and C. E. Seversen, J. Chem. Phys. , 122 , 014117 (2005). Critical Examination
of the Supermolecule Density Functional Theory Calculations of Intermolecular Interac-
tions.
182. J. A. Anderson and G. S. Tschumper, J. Phys. Chem. A , 110 , 7268 (2006). Characterizing the
Potential Energy Surface of the Water Dimer with DFT: Failures of Some Popular Func-
tionals for Hydrogen Bonding.
183. S. Kristy´n and P. Pulay, Chem. Phys. Lett. , 229 , 175 (1994). Can (Semi)local Density
Functional Theory Account for the London Dispersion Forces?
184. P. Hobza, J. ˇ poner, and T. Reschel, J. Comput. Chem. , 16 , 1315 (1995). Density-Functional
Theory and Molecular Clusters.
185. E. R. Johnson, R. A. Wolkow, and G. A. DiLabio, Chem. Phys. Lett. , 394 , 334 (2004).
Application of 25 Density Functionals to Dispersion-Bound Homomolecular Dimers.
186. Y. Zhao and D. Truhlar, J. Phys. Chem. A , 110 , 5121 (2006). Comparative DFT Study of van
der Waals Complexes: Rare-Gas Dimers, Alkaline-Earth Dimers, Zinc Dimer, and Zinc-
Rare-Gas Dimers.
187. C. Morgado, M. A. Vincent, I. H. Hillier, and X. Shan, Phys. Chem. Chem. Phys. , 9 , 448
(2007). Can the DFT-DMethod Describe the Full Range of Noncovalent Interactions Found
in Large Biomolecules?
188. P. Jureˇka, J. ˇ ern ´ , P. Hobza, and D. R. Salahub, J. Comput. Chem. , 28 , 555 (2007). Density
Functional Theory Augmented with an Empirical Dispersion Term. Interaction Energies and
Geometries of 80 Noncovalent Complexes Compared with Ab Initio Quantum Mechanics
Calculations.
189. S. Grimme, J. Comput. Chem. , 25 , 1463 (2004). Accurate Description of van der Waals
Complexes by Density Functional Theory Including Empirical Corrections.
190. E. R. Johnson and A. D. Becke, J. Chem. Phys. , 123 , 024101 (2005). A Post-Hartree-Fock
Model of Intermolecular Interactions.
191. E. R. Johnson and A. D. Becke, J. Chem. Phys. , 124 , 174104 (2006). A Post-Hartree-Fock
Model of Intermolecular Interactions: Inclusion of Higher-Order Corrections.
Search WWH ::




Custom Search