Chemistry Reference
In-Depth Information
131. W. Klopper, F. R. Manby, S. Ten-no, and E. F. Valeev, Int. Rev. Phys. Chem. , 25 , 427
(2006). R12 Methods in Explicitly Correlated Molecular Electronic Structure Theory,
page 427.
132. C. Ochsenfeld, J. Kussmann, and D. S. Lambrecht, in Reviews in Computational Chemistry ,
K. B. Lipkowitz and T. R. Cundari, Eds., Wiley-VCH, Hoboken, NJ, 2007, Vol. 23, pp.
1-82. Linear-Scaling Methods in Quantum Chemistry.
133. A. Boese, J. Martin, and W. Klopper, J. Phys. Chem. A , 111 , 11122 (2007). Basis Set Limit
Coupled Cluster Study of H-Bonded Systems and Assessment of More Approximate Methods.
134. http://www.134.info.
135. M. Sinnokrot and C. Sherrill, J. Phys. Chem. A , 108 , 10200 (2004). Highly Accurate Coupled
Cluster Potential Energy Curves for the Benzene Dimer: Sandwich, T-Shaped, and Parallel-
Displaced Configurations.
136. P. Jurecka and P. Hobza, J. Am. Chem. Soc. , 125 , 15608 (2003). True Stabilization Energies
for the Optimal Planar Hydrogen-Bonded and Stacked Structures of Guanine
Cytosine,
Thymine, and Their 9- and 1-Methyl Derivatives: Complete Basis Set Calcula-
tions at the MP2 and CCSD(T) Levels and Comparison with Experiment.
137. W. Klopper, H. P. Luthi, T. Brupbacher, and A. Bauder, J. Chem. Phys. , 101 , 9747 (1994). Ab
Initio Computations Close to the One-Particle Basis Set Limit on the Weakly Bound van der
Waals Complexes Benzene-Neon and Benzene-Argon.
138. P. Hobza, H. Selzle, and E. Schlag, J. Phys. Chem. , 100 , 18790 (1996). Potential Energy
Surface for the Benzene Dimer. Results of Ab Initio CCSD(T) Calculations ShowTwo Nearly
Isoenergetic Structures: T-Shaped and Parallel-Displaced.
139. M. Sinnokrot, E. Valeev, and C. Sherrill, J. Am. Chem. Soc. , 124 , 10887 (2002). Estimates of
the Ab Initio Limit for p - p Interactions: The Benzene Dimer.
140. W. Klopper, M. Quack, and M. A. Suhm, Mol. Phys. , 94 , 105 (1998). Explicitly Correlated
Coupled Cluster Calculations of the Electronic Dissociation Energies and Barriers to
Concerted Hydrogen Exchange of
Adenine
5).
141. Y. Zhao and D. Truhlar, J. Chem. Theo. Comput. , 1 , 415 (2005). Benchmark Databases for
Nonbonded Interactions and Their Use to Test Density Functional Theory.
142. S. Tsuzuki, K. Honda, T. Uchimaru, and M. Mikami, J. Chem. Phys. , 124 , 114304 (2006).
EstimatedMP2 and CCSD(T) Interaction Energies of n-Alkane Dimers at the Basis Set Limit:
Comparison of the Methods of Helgaker et al. and Feller.
143. K. Riley and P. Hobza, J. Phys. Chem. A , 111 , 8257 (2007). Assessment of the MP2 Method,
along with Several Basis Sets, for the Computation of Interaction Energies of Biologically
Relevant Hydrogen Bonded and Dispersion Bound Complexes.
144. T. Van Mourik, A. K. Wilson, and T. H. Dunning, Mol. Phys. , 96 , 529 (1999). Benchmark
Calculations with Correlated Molecular Wavefunctions. XIII. Potential Energy Curves for
He 2 ,Ne 2 and Ar 2 Using Correlation Consistent Basis Sets through Augmented Sextuple Zeta.
145. S. Grimme, J. Chem. Phys. , 118 , 9095 (2003). Improved Second-Order Møller-Plesset
Perturbation Theory by Separate Scaling of Parallel- and Antiparallel-Spin Pair Correlation
Energies.
146. Y. Jung, R. C. Lochan, A. D. Dutoi, and M. Head-Gordon, J. Chem. Phys. , 121 , 9793 (2004).
Scaled Opposite-Spin Second Order Møller-Plesset Correlation Energy: An Economical
Electronic Structure Method.
147. R. Lochan, Y. Jung, and M. Head-Gordon, J. Phys. Chem. A , 109 , 7598 (2005). Scaled
Opposite Spin Second Order Møller-Plesset Theory with Improved Physical Description of
Long-Range Dispersion Interactions.
148. J. G. Hill, J. A. Platts, and H.-J. Werner, Phys. Chem. Chem. Phys. , 8 , 4072 (2006).
Calculation of Intermolecular Interactions in the Benzene Dimer Using Coupled-Cluster
and Local Electron Correlation Methods.
149. J. Hill and J. Platts, J. Chem. Theo. Comput. , 3 , 80 (2007). Spin-Component Scaling Methods
for Weak and Stacking Interactions.
ð
HF
Þ n Oligomers ( n
¼
2
; ...;
Search WWH ::




Custom Search