Chemistry Reference
In-Depth Information
61. B. Jeziorski, R. Moszynski, and K. Szalewicz, Chem. Rev. , 94 , 1887 (1994). Perturbation
Theory Approach to Intermolecular Potential Energy Surfaces of van der Waals Complexes.
62. B. Jeziorski and K. Szalewicz, in Encyclopedia of Computational Chemistry , P. v. R. Schleyer,
Ed., Wiley, Chichester, UK, 1998, pp. 1376-1398. Intermolecular Interactions by Perturba-
tion Theory.
63. B. Jeziorski and K. Szalewicz, in Handbook of Molecular Physics and Quantum Chemistry ,
S. Wilson, Ed., Wiley, Chichester, UK, 2003, Vol. 3, pp. 232-279. Symmetry-Adapted
Perturbation Theory.
64. K. Szalewicz, K. Patkowski, andB. Jeziorski, in Intermolecular Forces andClusters II ,Vol.116of
Structure and Bonding , D. J. Wales, Ed., Springer, Berlin/Heidelberg Germany, 2005, pp.
44-117. Intermolecular Interactions via Perturbation Theory: FromDiatoms to Biomolecules.
65. R. Moszynski, P. E. S. Wormer, B. Jeziorski, and A. van der Avoird, J. Chem. Phys. , 103 , 8058
(1995). Symmetry-Adapted Perturbation Theory of Nonadditive Three-Body Interactions in
van der Waals Molecules. I. General Theory.
66. R. Moszynski, P. E. S. Wormer, T. G. A. Heijmen, and A. van der Avoird, J. Chem. Phys. , 108 ,
579 (1998). Symmetry-Adapted Perturbation Theory of Nonadditive Three-Body Interac-
tions in van der Waals Molecules. II. Application to the Ar 2 -HF Interaction.
67. R. Moszynski, P. E. S. Wormer, B. Jeziorski, and A. van der Avoird, J. Chem. Phys. , 107 ,
672 (1997). Erratum: Symmetry-Adapted Perturbation Theory of Nonadditive Three-Body
Interactions in van der Waals Molecules. I. General Theory [J. Chem. Phys. 103 , 8058
(1995)].
68. T. J. Dick and J. D. Madura, in Annual Reports in Computational Chemistry ,D.C.
Spellmeyer, Ed., Elsevier, Amsterdam, 2005, Vol. 1, pp. 59-74. A Review of the TIP4P,
TIP4P-Ew, TIP5P, and TIP5P-E Water Models.
69. A. J. Stone, Science , 315 , 1228 (2007). Water from First Principles.
70. R. Bukowski, K. Szalewicz, G. C. Groenenboom, and A. van der Avoird, Science , 315 , 1249
(2007). Predictions of the Properties of Water from First Principles.
71. A. DeFusco, D. Schofield, P. Daniel, and K. Jordan, Mol. Phys. , 105 , 2681 (2007). Comparison
of Models with Distributed Polarizable Sites for Describing Water Clusters.
72. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids ,
Wiley, New York, 1954.
73. H. Margenau and N. R. Kestner, Theory of Intermolecular Forces , Pergamon, Oxford, UK,
1971.
74. G. Chatasi´ ski and M. M. Szcz ¸ ´niak, Chem. Rev. , 94 , 1723 (1994). Origins of Structure and
Energetics of van der Waals Clusters from Ab Initio Calculations.
75. J. D. van der Waals, 1873. Ph.D. Thesis, Leiden University, Leiden, Netherlands, 1873, Over
de Continu¨teit van den Gas- en Vloeistoftoestand (On the Continuity of the Gas and Liquid
State ).
76. W. H. Keesom, Physik. Z. , 22 , 129 (1921). van der Waals Attractive Force.
77. W. H. Keesom, Physik. Z. , 23 , 225 (1922). Die Berechnung der Moleckularen Quadrupol-
momente aus der Zustandgleichung.
78. P. Debye, Physik. Z. , 21 , 178 (1920). van der Waals' Cohesion Forces.
79. P. Debye, Physik. Z. , 22 , 302 (1921). Molecular Forces and Their Electrical Interpretation.
80. H. Falckenhagen, Physik. Z. , 23 , 87 (1922). Koh¨ sion and Zustandsgleichung bei Dipolgasen.
81. F. London, Z. Phys. Chem. (B) , 11 , 222 (1930). ¨ ber einige Eigenschaften und Anwendungen
der Molekularkr¨ fte.
82. F. London, Trans. Faraday Soc. , 33 , 8 (1937). The General Theory of Molecular Forces.
83. W. Heitler and F. London, Z. Phys. , 44 , 455 (1927). Interaction of Neutral Atoms and
Homopolar Binding According to the Quantum Mechanics.
84. H. B. G. Casimir, Proc. Nederl. Akad. Wetensch. , B51 , 793 (1948). On the Attraction between
Two Perfectly Conducting Plates.
Search WWH ::




Custom Search