Environmental Engineering Reference
In-Depth Information
indicated as inactivation, mutagenesis or photochemical injury, reflect the UV
sensitivity of DNA.
For assessing the applicability of a biological UV dosimeter, photobiological as
well as radiometric criteria have to be met. If radiometrically properly characterized,
there is a broad scope of applications of biological UV dosimeters, which include the
determination of (i) long-term trends of biologically effective solar radiation; (ii) the
contribution of the UV-B range to the BED; (iii) the sensitivity of the biologically
effective solar irradiance to ozone; (iii) vertical attenuation coefficient of biologically
effective solar irradiance in natural waters; (iv) UV tolerance and protection
mechanisms; (v) the individual UV exposure of specific professional groups.
Acknowledgements. This work was supported by grants from the European
Commission and the German Ministries of Research BMBF and Environment BMU.
The work is based on cooperation with scientists from the following organizations:
(i) characterization and intercomparison of biological dosimeters: Laboratory for
Biophysics, HAS, Budapest; Inst. d'Aéronomie Spatiale, Brussels; Laboratory
Atmospheric Physics, Thessaloniki; Inst. Medical Physics, Veterinary Univ. Vienna;
Inst. Sci. & Technology, Univ. Manchester; National Cancer Center Research Inst.
Tokyo; Inst. Physics, NAS, Kiev; Inst. Suisse de Rech. Exp. Cancer, Lausanne; JOBO
Labortechnik, Gummerbach; Gigahertz-Optik, Puchheim; Fraunhofer Inst. Atmos. Res.
Garmisch-Partenkirchen; Inst. Meteorol. & Climatology, Univ. Hannover; GSF,
Neuherberg; Okazaki Large Spectrograph; (ii) personal dosimetry: Dermatology, Techn.
Univ. Dresden; Dermatology, University Köln; CIE, TC6-53 Personal dosimetry of UV
radiation; (iii) comparison of bioindicators: Inst. Botany & Pharm. Biol. Univ. Erlangen;
Zoological Inst. Univ. München; Botanical Inst. Univ. Freiburg; (iv) UV-monitoring:
BAS, Cambridge; AWI, Bremerhaven; INTA, Madrid.
References
1. Albritton, D.L., Aucamp, P.J., Megie, G. and Watson, R.T. (eds.) (1998) Scientific Assessment of Ozone
Depletion: 1998 , Report No. 44, WMO, Global Ozone Research and Monitoring Project, Geneva.
2. UNEP (1998) Environmental Effects of Ozone Depletion: 1998 Asssessment , ISBN92-607-1924-3.
3. Longstreth, J.D., de Gruijl, F.R., Kripke, M.L., Takazwa, Y. and van der Leun, J.C. (1995) Effects of
increased solar UV radiation on human health. AMBIO , 24: 153-165.
4. Häder, D.-P. (ed.) (1997) The Effects of Ozone Depletion on Aquatic Ecosystems , R. G. Landes Company,
Austin (TX), USA.
5. SCOPE (1992) Effects of Increased Ultraviolet Radiation on Biological Systems , SCOPE Report, SCOPE
Secretariat, Paris.
6. Baumstark-Khan, C., Kozubek, S. and Horneck, G. (eds.) (1999) Fundamentals for the Assessment of Risks
from Environmental Radiation., NATO ASI Series, 2. Environmental Security - Vol. 55, Kluwer,
Dordrecht.
7. Horneck, G. (1995) Quantification of the biological effectiveness of environmental UV radiation,
J. Photochem Photobio B:Biol. , 31 : 43-49.
8. Nicolet, M. (1989) Solar spectral irradiances and their diversity between 120 and 900 nm, Planet. Space
Sci. , 37: 1249-1289.
9. Lean, J.L.Rottmann, G.J., Kyle, H.L., Woods, T.N., Hickey, J.R. and Puga, L.C. (1997) Detection and
parameterization in solar mid- and near-ultraviolet radiation (200-400 nm), J. Geophys. Res. ,
102: 29939-29956.
10. Schulze, R. (1970) Strahlenklima der Erde , Wissenschaftliche Forschungsberichte, Band 72, Dr. Dietrich
Steinkopf Verlag, Darmstadt
Search WWH ::




Custom Search