Database Reference
In-Depth Information
{
[
,
] } =
[
+
, −
+
]
g
i
k
f
i cos
ʸ
k sin
ʸ
a
i sin
ʸ
k cos
ʸ
b
(6.15)
0
0
0
0
where index 0
1 for an image of size M row-pixels and
N column-pixels. Following the property of Fourier transformation [ 173 ], we can
obtain the Fourier transformation of
i
M
1 and 0
k
N
{
g
[
i
,
k
] }
that is related to the Fourier transform
of
{
f
[
i
,
k
] }
by:
F m cos
ʸ 0
(6.16)
nM
N
mN
M
e j (
M + n N
) ×
m
G
[
m
,
n
]=
ʸ 0 +
sin
ʸ 0 ,−
sin
ʸ 0 +
n cos
[
,
]
with the corresponding magnitude of G
m
n
which is equal to:
F m cos
ʸ 0
nM
N
mN
M
ʸ 0 +
sin
ʸ 0 ,−
sin
ʸ 0 +
n cos
(6.17)
=
When M
N , we have the following relationship:
|
[
,
] | = |
[
+
,−
+
] |
G
m
n
F
m cos
ʸ
n sin
ʸ
m sin
ʸ
n cos
ʸ
(6.18)
0
0
0
0
Let
|
G
[
m
,
n
] | =
M G
[
m
,
n
]
and
|
F
[
m
,
n
] | =
M F
[
m
,
n
]
, and then the relationship
shown in Eq. ( 6.18 ) can be rewritten as:
M G [
m
,
n
]=
M F [
m cos
ʸ 0 +
n sin
ʸ 0 ,−
m sin
ʸ 0 +
n cos
ʸ 0 ]
(6.19)
From the relationship in Eq. ( 6.19 ), the translation parameters disappear, leaving
only rotation parameters. The estimation of the parameters for rotation starts with
changing the magnitude of the Fourier transform from rectangular coordinates
[
m
,
n
]
to polar coordinates
[
r
, ʸ ]
by substituting index m
=
r cos
ʸ
and index n
=
r sin
ʸ
into
Eq. ( 6.5 ). The Fourier transform in polar coordinates can be obtained by:
M 1
i = 0
N 1
k = 0 g [ i , k ] e j ( r cos ʸ
1
MN
)
M +
N
r sin
ʸ
G
[
r
, ʸ ]=
(6.20)
Similarly, the Fourier transform in polar coordinates of
f
[
i cos
ʸ 0 +
k sin
ʸ 0
a
, −
i sin
ʸ 0 +
k cos
ʸ 0
b
]
can be obtained by:
1
MN
e j ( ( m cos ʸ 0 + n N sin ʸ 0 )
M + ( m M sin ʸ 0 + ncos ʸ 0 )
u
v
N
)
u
v
f
[
u
,
v
]
(6.21)
Next, substituting m
=
rcos
ʸ
and n
=
rsin
ʸ
into Eq. ( 6.21 ) produces the Fourier
transform in polar coordinates:
f
[
u
,
v
]
e j (
u
M +
v
N
) =
u
v
r cos
( ʸ ʸ 0 )
r sin
( ʸ ʸ 0 )
F
[
r
, ʸ ʸ 0 ]
(6.22)
MN
 
Search WWH ::




Custom Search