Image Processing Reference
In-Depth Information
Results demonstrate that mapping the data in row direction reaches both having higher ac-
curacy and consuming less time compared to the column direction method meaning that the
proposed method has the highest accuracy when mapping the data along the row direction.
[1] Jain AK, Ross A, Prabhakar S. An introduction to biometric recognition. IEEE T Cir-
cuit Syst. 2004;14(1):4-20.
[2] Schouten B, Jacobs B. Biometrics and their use in e-passports. Image Vis Comput.
[3] Beng TS, Rosdi BA. Finger-vein identiication using patern map and principal component
analysis. In: 2011 IEEE international conference signal image processing applications,
November; 2011:530-534.
[4] Kumar A, Zhou Y. Human identification using finger images. IEEE T Image Process.
[5] Zhao W, et al. Face recognition: A literature survey. Acm Computing Surveys (CSUR)
[6] Chellapa SR, Wilson CL, Sirohey S. Human and machine recognition of faces: a sur-
vey. Proc IEEE. 1995;83:705-740.
[7] Yang G, Xi X, Yin Y. Finger vein recognition based on a personalized best bit map.
Sensors (Basel). 2012;12(2):1738-1757.
[8] Song W, Kim T, Kim HC, Choi JH, Kong H-J, Lee S-R. A finger-vein verification sys-
tem using mean curvature. Patern Recogn Let. 2011;32(11):1541-1547.
[9] Yang J, Shi Y, Yang J. Personal identification based on finger-vein features. Comput
Hum Behav. 2011;27(5):1565-1570.
[10] Wu J-D, Ye S-H. Driver identiication using inger-vein paterns with radon transform
and neural network. Expert Syst Appl. 2009;36(3):5793-5799.
[11] Wu J-D, Liu C-T. Finger-vein patern identiication using principal component analys-
is and the neural network technique. Expert Syst Appl. 2011;38(5):5423-5427.
[12] Bishop CM. Patern recognition and machine learning. Vol. 1. New York: Springer,
[13] Kim KI, Jung K, Kim HJ. Face recognition using kernel principal component analysis.
Signal Process. 2002;9(2):40-42.
[14] Ebied RM. Feature extraction using PCA and Kernel-PCA for face recognition. Int Conf
Inform Syst. 2012;8:72-77.
[15] Hu P, Yang A. Indefinite Kernel entropy component analysis. Sci Tech. 2010;3:0-3.
[16] Jenssen R. Kernel entropy component analysis. IEEE Trans Patern Anal Mach Intell.
May 2010;32(5):847-860.
[17] Shekar BH, Sharmila Kumari M, Mestetskiy LM, Dyshkant NF. Face recognition using
kernel entropy component analysis. Neurocomputing. 2011;74(6):1053-1057.
[18] Shawe-Taylor J, Cristianini N. Kernel methods for patern analysis. New York, NY: Cam-
bridge University Press; 2004 p. 462.
[19] Damavandinejadmonfared S, Mobarakeh AK, Suandi SA, Rosdi BA. Evaluate and
determine the most appropriate method to identify finger vein. Procedia Eng.
[20] Damavandinejadmonfared S. Kernel entropy component analysis using local mean-based k-
nearest centroid neighbour (LMKNCN) as a classifier for face recognition in video surveillance
Search WWH ::

Custom Search