Image Processing Reference
In-Depth Information
[9] Dalal N, Triggs B. Histograms of oriented gradients for human detection. Int Conf
Comput Vis Patern Recognit. 2005;1:886-893.
[10] Mikolajczyk K, Schmid C. A performance evaluation of local descriptors. IEEE Trans
Pattern Anal Mach Intell. 2005;27:1615-1630.
[11] Sarfraz S, Hellwich O. Madeira, Portugal. Head pose estimation in face recognition
across pose scenarios. Proceedings of VISAPP 2008, Int. Conference on Computer Vi-
sion Theory and Applications; 2008, p. 235-242.
[12] Chen N, Blostein D. A survey of document image classification: problem statement,
classiier architecture and performance evaluation. IJDAR. 2007;10:1-16.
[13] Ha J, Haralick RM. Recursive X-Y cut using bounding boxes of connected compon-
ents. Doc Anal Recognit. 1995;2:952-955.
[14] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convo-
lutional neural networks. In: Pereira F, Burges CJC, Botou L, Weinberger KQ, eds.
Curran Associates, Inc; 1097-1105. Advances in neural information processing systems.
[15] Antonacopoulos A, Bridson D, Papadopoulos C. ICDAR 2007 Page Segmentation
ICDAR2007_competition/ .
[16] Ilie M. A content based image retrieval approach based on document queries,
IPCV'14—The 2014 International Conference on Image Processing, Computer Vision,
and Patern Recognition; 2014.
[17] Ilie M. Document image segmentation through clustering and connectivity analysis,
The International Conference on Multimedia and Network Information Sys-
tems—MISSI'14; 2014.
[18] Google. Ocropus, April 21, 2013, htp:// .
[19] Sauvola J, Seppanen T, Haapakoski S, Pietikainen M. Adaptive document binariza-
tion, Ulm, Germany: s.n., 1997. International Conference on Document Analysis and
Recognition. p. 147-152.
Search WWH ::

Custom Search