Image Processing Reference
In-Depth Information
[1] Avril N, Schelling M, Dose J, Weber WA, Schwaiger M. Utility of PET in breast cancer.
Clin Positron Imaging. 1999;2:261-271.
[2] Roy S, Carass A, Bazin PL, Prince JL. Intensity inhomogeneity correction of magnetic
resonance images using patches. In: SPIE 7962, Medical imaging. 2011:9621F.
[3] Sled JG, Zijdenbos AP, Evans AC. A nonparametric method for automatic correction
of intensity nonuniformity in MRI data. IEEE Trans Med Imaging. 1998;17:87-97.
[4] Kim K, Habas P, Rajagopalan V, Scot J, Rousseau F, Glenn O, et al. Bias ield incon-
sistency correction of motion-scatered multislice MRI for improved 3D image recon-
struction. IEEE Trans Med Imaging. 2011;30.
[5] Wels M, Zheng Y, Huber M, Hornegger J, Comaniciu D. A discriminative model-con-
strained EM approach to 3D MRI brain tissue classification and intensity non-uniform-
ity correction. Phys Med Biol. 2011;56:3269.
[6] Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via
the EM algorithm. J R Stat Soc Series B Stat Methodol. 1977;1-38.
[7] Pham DL, Prince JL. An adaptive fuzzy C-means algorithm for image segmentation
in the presence of intensity inhomogeneities. Patern Recognit Let. 1999;20:57-68.
[8] Clarke L, Velthuizen R, Camacho M, Heine J, Vaidyanathan M, Hall L, et al. MRI seg-
mentation: methods and applications. Magn Reson Imaging. 1995;13:343-368.
[9] Van Leemput K, Maes F, Vandermeulen D, Suetens P. Automated model-based bias
field correction of MR images of the brain. IEEE Trans Med Imaging. 1999;18:885-896.
[10] Gispert JD, Reig S, Pascau J, Vaquero JJ, García-Barreno P, Desco M. Method for
bias field correction of brain T1-weighted magnetic resonance images minimizing seg-
mentation error. Hum Brain Mapp. 2004;22:133-144.
[11] Wells III W, Grimson W, Kikinis R, Jolesz F. Adaptive segmentation of MRI data. IEEE
Trans Med Imaging. 1996;15:429-442.
[12] Guillemaud R, Brady M. Estimating the bias field of MR images. IEEE Trans Med Ima-
ging. 1997;16:238-251.
[13] Manjón JV, Lull JJ, Carbonell-Caballero J, García-Martí G, Martí-Bonmatí L, Robles
M. A nonparametric MRI inhomogeneity correction method. Med Image Anal.
[14] Ashburner J, Friston KJ. Voxel-based morphometry—the methods. Neuroimage.
[15] Nobi M, Yousuf M. A new method to remove noise in magnetic resonance and ultra-
sound images. J Sci Res. 2011;3.
[16] Singh WJ, Nagarajan B. Automatic diagnosis of mammographic abnormalities based
on hybrid features with learning classifier. Comput Methods Biomech Biomed Eng.
[17] Luo J, Zhu Y, Clarysse P, Magnin I. Correction of bias field in MR images using singu-
larity function analysis. IEEE Trans Med Imaging. 2005;24:1067-1085.
[18] Ivanovska T, Laqua R, Wang L, Völzke H, Hegenscheid K. Fast implementations of
the levelset segmentation method with bias field correction in MR images: full domain
and mask-based versions. In: Berlin, Heidelberg: Springer; 674-681. Patern recognition
and image analysis. 2013;vol. 7887.
[19] Adhikari SK, Sing J, Basu D, Nasipuri M, Saha P. Segmentation of MRI brain images
by incorporating intensity inhomogeneity and spatial information using probabilistic fuzzy c-
Search WWH ::

Custom Search