Image Processing Reference
In-Depth Information
Thereby, as future works, we are planning to develop a segmentation algorithm and auto-
matic classifiers to perform a tissue classification based on texture and spectral analysis of the
RF signal.
[1] Noble JA. Ultrasound image segmentation and tissue characterization. Proc Inst Mech
Eng H: J Eng Med. 2010;224:307. doi:10.1243/09544119JEIM604.
[2] Mountford RA, Wells PNT. Ultrasonic liver scanning: the A-scan in the normal and
cirrhosis. Phys Med Biol. 1972;17:261-269.
[3] Thijssen JM. Ultrasonic speckle formation, analysis and processing applied to tissue
characterization. Patern Recogn Let. 2003;24:659-675.
[4] Tsui P-H, Yeh C-K, Chang C-C, Liao Y-Y. Classification of breast masses by ultrasonic
Nakagami imaging: a feasibility study. Phys Med Biol. 2008;53:6027-6044.
[5] Molthen RC, Shankar PM, Reid JM, Forsberg F, Halpern EJ, Piccoli CW, et al. Com-
parisons of the Rayleigh and K distribution models using in vivo breast and liver tis-
sue. Ultrasound Med Biol. 1998;24:93-100.
[6] Cliford L, Fizgerald P, James D. Non-Rayleigh irst-order statistics of ultrasonic
backscatter from normal myocardium. Ultrasound Med Biol. 1993;19:487-495.
[7] Nillesen MM, Lopata RGP, Gerrits IH, Kapusta L, Thijssen JM, de Korte CL. Model-
ing envelope statistics of blood and myocardium for segmentation of echocardio-
graphic images. Ultrasound Med Biol. 2008;34(4):674-680.
[8] Lizzi FL, Greenbaum M, Feleppa EJ, Elbaum M, Coleman DJ. Theoretical framework
for spectrum analysis in ultrasonic tissue characterization. J Acoustic Soc Am.
[9] Raju BI, Swindells KJ, Gonzalez S, Srinivasan MA. Quantitative ultrasonic methods
for characterization of skin lesions in vivo. Ultrasound Med Biol. 2003;29(6):825-838.
[10] Engelhorn A.L.D.V., Engelhorn CA, Salles-Cunha SX, Ehlert R, Akiyoshi FK, Assad
KW. Ultrasound tissue characterization of the normal kidney. Ultrasound Quart.
[11] Moradi M. A new paradigm for ultrasound-based tissue typing in prostate cancer
[Tese de doutorado]. School of Computing, Queen's University; 2008.
[12] Szabo TL. Diagnostic ultrasound imaging inside out. Hartford, Connecticut: Elsevier;
[13] Granero MA, Gutierrez MA, Costa ET. Rebuilding IVUS images from raw data of the
RF signal exported by IVUS equipment. In: The 2014 international conference on image
processing, computer vision, and patern recognition, 2014, Las Vegas, IPCV '14;
[14] Ciompi F. Ecoc-based plaque classification using in-vivo and ex-vivo intravascular ul-
trasound data [Master thesis]. Computer Vision Center, Universitat Autonoma de Bar-
celona; 2008.
[15] Gonzalez RC, Woods RE, Eddins SL. Digital image processing using Matlab. Prentice
Hall; 2004.
[16] Prat WK. Digital image processing: PIKS Scientific inside. 4th ed. John Wiley & Sons;
Search WWH ::

Custom Search