Global Positioning System Reference
In-Depth Information
2
T
the usual way, so that
is the sum of squares of the m
separate errors, minimizing this quadratic gives the normal equations
A T A
e
= (
b
A x
)
(
b
A x
)
A T b
A T A
) 1 A T b
x
ˆ
=
or
x
ˆ
= (
(8.23)
and the error vector is
ˆ
=
ˆ
.
e
b
A
x
(8.24)
The covariance matrix for the parameters
x is
ˆ
e T
ˆ
e
ˆ
2
A T A
) 1
2
0
x = σ
0 (
with
σ
=
n .
(8.25)
m
The linearized observation equation (8.21) can be rewritten in a vector formula-
tion
X i
1
Y i
X k
Y k
Z k
X i , 0
Y i , 0
Z i , 0
P i
k
i
cdt k
T i
I i +
e i .
= ρ
0 +
+
+
,
k
i , 0
k
i , 0
k
i , 0
ρ
ρ
ρ
Z i
cdt i
(8.26)
We rearrange this to resemble the usual formulation of a least-squares problem
A x
=
b :
=
X i
1
Y i
X k
Y k
Z k
X i , 0
Y i , 0
Z i , 0
P i
k
i
cdt k
T i
I i
e i .
ρ
0 +
i
i
i
,
ρ
ρ
ρ
Z i
cdt i
,
0
,
0
,
0
(8.27)
A unique solution cannot be found from a single equation. Let b i
P i
k
i ,
=
ρ
0 +
cdt k
T i
I i
e i . Then the final solution comes from
X 1
Y 1
Z 1
X i , 0
Y i , 0
Z i , 0
1
1
i , 0
1
i , 0
1
i , 0
ρ
ρ
ρ
X 2
Y 2
Z 2
X i , 0
Y i , 0
Z i , 0
=
1
X i , 1
2
i , 0
2
i , 0
2
i , 0
ρ
ρ
ρ
Y i , 1
X 3
Y 3
Z 3
=
X i , 0
Y i , 0
Z i , 0
.
A x
b
e
(8.28)
1
Z i , 1
cdt i , 1
3
i , 0
3
i , 0
3
i , 0
ρ
ρ
ρ
.
.
.
.
X m
Y m
Z m
X i , 0
Y i , 0
Z i , 0
1
m
i ,
m
i ,
k
i , 0
ρ
ρ
ρ
0
0
If m
Z i , 1 . This has to be added to
the approximate receiver position to get the next approximate position:
X i , 1 =
4, there is a unique solution:
X i , 1 ,
Y i , 1 ,
X i , 0 +
X i , 1 ,
Y i , 1 =
Y i , 0 +
Y i , 1 ,
(8.29)
Z i , 1 =
Z i , 0 +
Z i , 1 .
Search WWH ::




Custom Search