Biomedical Engineering Reference
In-Depth Information
We have discussed in this review all the most promising approaches to make
stimuli-responsive polymersomes, including non-biocompatible ones, for the proof
of concept and for the larger applications of polymersomes. Classical chemical
stimuli such as pH changes, hydrolysis, oxidation or reduction reaction, are used to
trigger a change in the hydrophilic-hydrophobic balance of the amphiphilic copo-
lymers, which in turn destabilises the vesicular structure either by forming leaking
pores or causing the vesicle to burst. Physical stimuli such as temperature, light,
magnetic field or ultrasonic wave are also of great potential interest, because they
don't require any chemical environmental change and can be applied remotely and/
or locally. Different mechanisms are involved in the destruction or deformation of
polymersomes under physical stimuli. We believe the use of the physical stimuli
will provide the impetus for the development of new stimuli-responsive polymer
vesicles.
References
Ahmed, F. & Discher, D. (2004) Self-porating polymersomes of PEG-PLA and PEG-PCL:
hydrolysis-triggered controlled release vesicles. Journal of Controlled Release , 96, 37-53.
Ahmed, F., Pakunlu, R., Brannan, A., Bates, F., Minko, T. & Discher, D. (2006) Biodegradable
polymersomes loaded with both paclitaxel and doxorubicin permeate and shrink tumors, induc-
ing apoptosis in proportion to accumulated drug. Journal of Controlled Release , 116, 150-158.
Angelova, M. I. & Dimitrov, D. S. (1986) Liposome electroformation. Faraday Discussions ,
81, 303-+.
Antonietti, M. & Forster, S. (2003) Vesicles and liposomes: A self-assembly principle beyond
lipids. Advanced Materials , 15, 1323-1333.
Aranda-Espinoza, H., Bermudez, H., Bates, F. & Discher, D. (2001) Electromechanical limits of
polymersomes. Physical Review Letters , 87, 208301.
Battaglia, G. & Ryan, A. (2005) Bilayers and interdigitation in block copolymer vesicles. Journal
of the American Chemical Society , 127, 8757-8764.
Battaglia, G., Ryan, A. & Tomas, S. (2006) Polymeric vesicle permeability: A facile chemical
assay. Langmuir , 22, 4910-4913.
Battaglia, G. & Ryan, A. J. (2006) Pathways of polymeric vesicle formation. Journal of Physical
Chemistry B , 110, 10272-10279.
Bellomo, E., Wyrsta, M., Pakstis, L., Pochan, D. & Deming, T. (2004) Stimuli-responsive poly-
peptide vesicles by conformation-specific assembly. Nature Materials , 3, 244-248.
Ben-Haim, N., Broz, P., Marsch, S., Meier, W. & Hunziker, P. (2008) Cell-specific integration of
artificial organelles based on functionalized polymer vesicles. Nano Letters , 8, 1368-1373.
Bermudez, H., Aranda-Espinoza, H., Hammer, D. & Discher, D. (2003) Pore stability and dynam-
ics in polymer membranes. Europhysics Letters , 64, 550.
Bertin, A., Hermes, F. & Schlaad, H. (2010) Biohybrid and Peptide-Based Polymer Vesicles.
Polymer Membranes/Biomembranes. Berlin, Springer-Verlag Berlin.
Bhargava, P., Zheng, J. X., Li, P., Quirk, R. P., Harris, F. W. & Cheng, S. Z. D. (2006) Self-
assembled polystyrene-block-poly(ethylene oxide) micelle morphologies in solution.
Macromolecules , 39, 4880-4888.
Borchert, U., Lipprandt, U., Bilang, M., Kimpfler, A., Rank, A., Peschka-Suss, R., Schubert, R.,
Lindner, P. & Forster, S. (2006) pH-Induced Release from P2VP PEO Block Copolymer
Vesicles. Langmuir , 22, 5843-5847.
Search WWH ::




Custom Search