Biomedical Engineering Reference
In-Depth Information
The demanding challenge of the future research in this field is to find the right
carrier architecture and optimum polymer chemistry that can improve the delivery
of sophisticated and complex therapeutic agents (e.g., poorly soluble drugs, pro-
teins and genes) to their cellular and intracellular targets. For a potential clinical
application, barriers like high drug loading, stable drug encapsulation, controlled
drug release, and micelle-cell interaction should be addressed, a large-scale good
manufacturing practice (GMP) production procedure should be developed, and the
safety profile needs to be established.
References
Aliabadi, H. M. & Lavasanifar, A. (2006) Polymeric micelles for drug delivery. Expert Opin Drug
Deliv , 3, 139-62.
Bae, Y., Fukushima, S., Harada, A. & Kataoka, K. (2003a) Design of environment-sensitive supra-
molecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to
intracellular pH change. Angewandte Chemie-International Edition , 42, 4640-4643.
Bae, Y., Fukushima, S., Harada, A. & Kataoka, K. (2003b) Design of environment-sensitive
supramolecular assemblies for intracellular drug delivery: polymeric micelles that are respon-
sive to intracellular pH change. Angew Chem Int Ed Engl , 42, 4640-3.
Bae, Y., Jang, W. D., Nishiyama, N., Fukushima, S. & Kataoka, K. (2005a) Multifunctional poly-
meric micelles with folate-mediated cancer cell targeting and pH-triggered drug releasing
properties for active intracellular drug delivery. Molecular Biosystems , 1, 242-250.
Bae, Y., Nishiyama, N., Fukushima, S., Koyama, H., Yasuhiro, M. & Kataoka, K. (2005b)
Preparation and biological characterization of polymeric micelle drug carriers with intracel-
lular pH-triggered drug release property: tumor permeability, controlled subcellular drug dis-
tribution, and enhanced in vivo antitumor efficacy. Bioconjug Chem , 16, 122-30.
Behr, J. P. (1997) The proton sponge: A trick to enter cells the viruses did not exploit. Chimia , 51,
34-36.
Benns, J. M., Choi, J. S., Mahato, R. I., Park, J. S. & Kim, S. W. (2000) pH-sensitive cationic
polymer gene delivery vehicle: N-Ac-poly(L-histidine)-graft-poly(L-lysine) comb shaped
polymer. Bioconjug Chem , 11, 637-45.
Bijsterbosch, H. D., Cohen Stuart, M. A. & Fleer, G. J. (1999) Effect of Block and Graft
Copolymers on the Stability of Colloidal Silica. J Colloid Interface Sci , 210, 37-42.
Boussif, O., Lezoualch, F., Zanta, M. A., Mergny, M. D., Scherman, D., Demeneix, B. & Behr, J. P.
(1995) A Versatile Vector for Gene and Oligonucleotide Transfer into Cells in Culture and
in-Vivo - Polyethylenimine. Proceedings of the National Academy of Sciences of the United
States of America , 92, 7297-7301.
Bromberg, L. (2008) Polymeric micelles in oral chemotherapy. J Control Release , 128, 99-112.
Cammas, S., Suzuki, K., Sone, C., Sakurai, Y., Kataoka, K. & Okano, T. (1997) Thermo-
responsive polymer nanoparticles with a core-shell micelle structure as site-specific drug car-
riers. Journal of Controlled Release , 48, 157-164.
Cho, C. S., Kobayashi, A., Takei, R., Ishihara, T., Maruyama, A. & Akaike, T. (2001) Receptor-
mediated cell modulator delivery to hepatocyte using nanoparticles coated with carbohydrate-
carrying polymers. Biomaterials , 22, 45-51.
Choi, S. H., Lee, S. H. & Park, T. G. (2006) Temperature-sensitive pluronic/poly(ethylenimine)
nanocapsules for thermally triggered disruption of intracellular endosomal compartment.
Biomacromolecules , 7, 1864-70.
Choi, Y. H., Liu, F., Park, J. S. & Kim, S. W. (1998) Lactose-poly(ethylene glycol)-grafted poly-
L-lysine as hepatoma cell-targeted gene carrier. Bioconjugate Chemistry , 9, 708-718.
Search WWH ::




Custom Search