Biology Reference
In-Depth Information
63. Kidd P. Th1/Th2 balance: the hypothesis, its limitations, and implications for health and
disease. Altern Med Rev 2003;8:223-46.
64. Marpegan L, Bekinschtein TA, Freudenthal R, Rubio MF, Ferreyra GA, Romano A, et al.
Participation of transcription factors from the Rel/NF-B family in the circadian system in
hamsters. Neurosci Lett 2004;358:9-12.
65. Selgas L, Pazo D, Arce A, Esquifino AI, Cardinali DP. Circadian rhythms in adenohypo-
physial hormone levels and hypothalamic monoamine turnover in mycobacterial adjuvant-
injected rats. Biol Signals Recept 1998;7:15-24.
66. Esquifino AI, Selgas L, Vara E, Arce A, Cardinali DP. Twenty-four hour rhythms of
hypothalamic corticotropin-releasing hormone, thyrotropin-releasing hormone, growth
hormone-releasing hormone and somatostatin in rats injected with Freund's adjuvant. Biol
Signals Recept 1999;8:178-90.
67. Krueger JM, Obal F, Fang J, Kubota T, Taishi P. The role of cytokines in physiological
sleep regulation. Ann NY Acad Sci 2001;933:211-21.
68. Halberg F, Johnson EA, Brown BW, Bittner JJ. Susceptibility rhythm to E. coli endotoxin
and bioassay. Proc Soc Exp Biol Med 1960;103:142-44.
69. Hrushesky WJM, Langevin T, Kim YJ, Wood PA. Circadian dynamics of tumor necrosis
factor  (cachectin) lethality. J Exp Med 1994;180:1059-65.
70. Marpegan L, Bekinschtein TA, Costas MA, Golombek DA. Circadian responses to endo-
toxin treatment in mice. J Neuroimmunol 2005;160:102-9.
71. Bruno VA, Scacchi P, Pérez Lloret S, Esquifino AI, Cardinali DP, Cutrera RA. Melatonin
treatment counteracts the hyperthermic effect of lipopolysaccharide injection in the syrian
hamster. Neurosci Lett 2005;389:169-72.
72. Maestroni GJ. Melatonin as a therapeutic agent in experimental endotoxic shock. J Pineal
Res 1996;20:84-89.
73. Crespo E, Macias M, Pozo D, Escames G, Martin M, Vives F, et al. Melatonin inhibits
expression of the inducible NO synthase II in liver and lung and prevents endotoxemia
in lipopolysaccharide-induced multiple organ dysfunction syndrome in rats. FASEB J
1999;13:1537-46.
74. Lundkvist GB, Robertson B, Mhlanga JD, Rottenberg ME, Kristensson K. Expression
of an oscillating interferon-gamma receptor in the suprachiasmatic nuclei. Neuroreport
1998;9:1059-63.
75. Lundkvist GB, Andersson A, Robertson B, Rottenberg ME, Kristensson K. Light-
dependent regulation and postnatal development of the interferon-gamma receptor in the
rat suprachiasmatic nuclei. Brain Res 1999;849:231-34.
76. Lundkvist GB, Hill RH, Kristensson K. Disruption of circadian rhythms in synaptic activ-
ity of the suprachiasmatic nuclei by African trypanosomes and cytokines. Neurobiol Dis
2002;11:20-27.
77. Lundkvist GB, Kristensson K, Hill RH. The suprachiasmatic nucleus exhibits diurnal vari-
ations in spontaneous excitatory postsynaptic activity. J Biol Rhythms 2002;17:40-51.
78. Boggio V, Castrillon P, Pérez Lloret S, Riccio P, Esquifino AI, Cardinali DP, et al.
Cerebroventricular administration of interferon-gamma modifies locomotor activity in the
golden hamster. Neurosignals 2003;12:89-94.
79. Cano P, Cardinali DP, Jimenez V, Alvarez MP, Cutrera RA, Esquifino AI. Effect of
interferon-gamma treatment on 24-hour variations in plasma ACTH, growth hor-
mone, prolactin, luteinizing hormone and follicle-stimulating hormone of male rats.
Neuroimmunomodulation 2005;12:146-51.
80. Ohdo S, Koyanagi S, Suyama H, Higuchi S, Aramaki H. Changing the dosing schedule
minimizes the disruptive effects of interferon on clock function. Nat Med 2001;7:356-60.
Search WWH ::




Custom Search