Biomedical Engineering Reference
In-Depth Information
[75]
Lai, W.C. et al., Differential regulation of LPS-induced MMP-1 and MMP-9 by p38
and ERK1/2 mitogen-activated protein kinases, J. Immunol ., 170, 6244, 2003.
[76]
Lu, Y. and Wahl, L., Production of MMP-9 by activated monocyes involves a
PI3K/Akt/IKKα/NF-κB pathway, J. of Leuk. Biol ., 78, 1, 2005.
[77]
Poligone, B. and Baldwin, A.S., Positive and negative regulation of NF-κB by Cox-
2: Roles of different prostaglandins, J. Biol. Chem ., 276, 38658, 2001.
[78]
Anthonsen, M.W., Solhaug, A., and Johansen, B., Functional coupling between secre-
tory and cytosolic phospholipase A2 modulates TNFα- and IL-1β-induced NF-κB
activation, J. Biol. Chem ., 276, 30527, 2001.
[79]
Cheah, F.C. et al., Detection of apoptosis by caspase-3 activation in tracheal aspirate
neutrophils from premature infants: Relationship with NF-κB activation, J. Leuk.
Biol ., 77, 432, 2005.
[80]
Taneja, R. et al., Delayed neutrophil apoptosis in sepsis is associated with maintenance
of mitochondrial transmembrane potential and reduced caspase-9 activity, Crit. Care
Med ., 32, 1460, 2004.
[81]
Ward, C. et al., Regulation of granulocyte apoptosis by NF-κB, Biochem. Soc. Trans .,
32, 465, 2004.
[82]
Gewirtz, A.T. et al., Bacterial flagellin activates basolaterally expressed TLR5 to
induce epithelial proinflammatory gene expression, J. Immunol ., 15, 1882, 2001.
[83]
Neish, A.S. et al., Prokaryotic regulation of epithelial responses by inhibition of IκBα
ubiquitination, Science, 289, 1560, 2000.
[84]
Kelly, D. et al., Commensal anaerobic gut bacteria attenuate inflammation by regu-
lating nuclear-cytoplasmic shuttling of PPARγ and RelA, Nat. Immunol ., 5, 104, 2004.
[85]
Castrillo, A. et al., Inhibition of IKK and IκB phosphorylation by 15d-PGJ2 in
activated murine macrophages, Mol. Cell . Biol., 20, 1692, 2000.
[86]
Rossi, A. et al., Anti-inflammatory cyclopentonone prostaglandins are direct inhibitors
of IκB kinase, Nature, 403, 103, 2000.
[87]
Schottelius, A. et al., Interleukin-10 signaling blocks IκB kinase activity and NF-κB
DNA binding, J. Biol. Chem ., 274, 1868, 1999.
[88]
Reynaert, N.L. et al., Nitric oxide represses IκB kinase through S-nitrosylation, Proc.
Nat. Acad. Sci. USA , 101, 1845, 2004.
[89]
Wilson, H.M. et al., Inhibition of macrophage NF-κB leads to a dominant anti-
inflammatory phenotype that attenuates glomerular inflammation in vivo, Am. J.
Pathol ., 167, 27, 2005.
[90]
Arkan, M. et al., IKKβ links inflammation to obesity-induced insulin resistance, Nat.
Med ., 11, 191, 2005.
[91]
Cai, M. et al., Local and systemic insulin resistance resulting from hepatic activation
of IKK-β and NF-κB, Nat. Med ., 11, 181, 2005.
[92]
Chen, L.W. et al., The two faces of IKK and NF-κB inhibition: Prevention of systemic
inflammation but increased local injury following ischemia-reperfusion, Nat. Med .,
9, 575, 2002.
[93]
Maeda, S. et al., IKKβ couples hepatocyte death to cytokine-driven compensatory
proliferation that promotes chemical hepatocarcinogenesis, Cell, 121, 977, 2005.
[94]
Firestein, G.S., NF-κB: Holy grail for rheumatoid arthritis?, Arthr. Rheum., 50, 2381,
2004.
[95]
Miagkov, A.V. et al., NF-κB activation provides the potential link between inflamma-
tion and hyperplasia in the arthritic joint, Proc. Nat. Acad. Sci. USA , 95, 13859, 1998.
[96]
Jimi, E. et al., Selective inhibition of NF-κB blocks osteoclastogenesis and prevents
inflammatory bone destruction in vivo, Nat. Med ., 10, 617, 2004.
 
Search WWH ::




Custom Search