Biomedical Engineering Reference
In-Depth Information
[24]
Bohuslav, J., Chen, L.F., Kwon, H. et al., p53 induces NF-κB activation by an IκB
kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6
kinase 1, J. Biol. Chem. 279 (25), 26115-26125, 2004.
[25]
Bird, T.A., Schooley, K., Dower, S.K. et al., Activation of nuclear transcription factor
NF-kappaB by interleukin-1 is accompanied by casein kinase II-mediated phospho-
rylation of the p65 subunit, J. Biol. Chem. 272 (51), 32606-32612, 1997.
[26]
Wang, D. and Baldwin, A.S., Jr., Activation of nuclear factor-kappaB-dependent
transcription by tumor necrosis factor-alpha is mediated through phosphorylation of
RelA/p65 on serine 529, J. Biol. Chem. 273 (45), 29411-29416, 1998.
[27]
Wang, D., Westerheide, S.D., Hanson, J.L. et al., TNF-α-induced phosphorylation of
RelA/p65 on Ser529 is controlled by casein kinase II, J. Biol. Chem. 275 (42),
32592-32597, 2000.
[28]
Jang, M.K., Goo, Y.H., Sohn, Y.C. et al., Ca2+/calmodulin-dependent protein kinase
IV stimulates nuclear factor-kappaB transactivation via phosphorylation of the p65
subunit, J. Biol. Chem. 276 (23), 20005-20010, 2001.
[29]
Bae, J.S., Jang, M.K., Hong, S. et al., Phosphorylation of NF-kappaB by calmodulin-
dependent kinase IV activates anti-apoptotic gene expression, Biochem. Biophys. Res.
Commun. 305 (4), 1094-1098, 2003.
[30]
Buss, H., Dorrie, A., Schmitz, M.L. et al., Phosphorylation of serine 468 by GSK-
3beta negatively regulates basal p65 NF-kappaB activity, J. Biol. Chem. 279 (48),
49571-49574, 2004.
[31]
Fujita, F., Taniguchi, Y., Kato, T. et al., Identification of NAP1, a regulatory subunit
of IkappaB kinase-related kinases that potentiates NF-kappaB signaling, Mol. Cell.
Biol. 23 (21), 7780-7793, 2003.
[32]
Madrid, L.V., Wang, C.Y., Guttridge, D.C. et al., AKT suppresses apoptosis by
stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB, Mol.
Cell. Biol. 20 (5), 1626-1638, 2000.
[33]
Ryo, A., Suizu, F., Yoshida, Y. et al., Regulation of NF-kappaB signaling by Pin1-
dependent prolyl isomerization and ubiquitin-mediated proteolysis of p65/RelA, Mol.
Cell 12 (6), 1413-1426, 2003.
[34]
Rocha, S., Garrett, M.D., Campbell, K.J. et al., Regulation of NF-kappaB and p53
through activation of ATR and Chk1 by the ARF tumour suppressor, Embo J. , 2005.
[35]
Rocha, S., Campbell, K.J., and Perkins, N.D., p53- and Mdm2-independent repression of
NF-kappa B transactivation by the ARF tumor suppressor, Mol. Cell 12 (1), 15-25, 2003.
[36]
Parker, D., Ferreri, K., Nakajima, T. et al., Phosphorylation of CREB at Ser-133
induces complex formation with CREB-binding protein via a direct mechanism, Mol.
Cell. Biol. 16 (2), 694-703, 1996.
[37]
Lambert, P.F., Kashanchi, F., Radonovich, M.F. et al., Phosphorylation of p53 serine
15 increases interaction with CBP, J. Biol. Chem. 273 (49), 33048-33053, 1998.
[38]
Chen, L.L., Williams, S.A., Mu, Y. et al., NF-kappaB RelA phosphorylation regulates
RelA acetylation, 2005.
[39]
Schmitz, M.L., Stelzer, G., Altmann, H. et al., Interaction of the COOH-terminal
transactivation domain of p65 NF-kappaB with TATA-binding protein, transcription
factor IIB, and coactivators, J. Biol. Chem. 270 (13), 7219-7226, 1995.
[40]
Xu, X., Prorock, C., Ishikawa, H. et al., Functional interaction of the v-Rel and c-
Rel oncoproteins with the TATA-binding protein and association with transcription
factor IIB, Mol. Cell. Biol. 13 (11), 6733-6741, 1993.
[41]
Blair, W.S., Bogerd, H.P., Madore, S.J. et al., Mutational analysis of the transcription
activation domain of RelA: Identification of a highly synergistic minimal acidic
activation module, Mol. Cell Biol. 14 (11), 7226-7234, 1994.
Search WWH ::




Custom Search