Environmental Engineering Reference
In-Depth Information
Grigal, D. F. 2003. Mercury Sequestration in Forests and
Peatlands: A Review. Journal of Environmental Quality
32:393-405.
Grigal, D. F., E. A. Nater, and P. S. Homann. 1994. Spatial
distribution patterns of mercury in an east-central
Minnesota landscape. In: C. J. Watras and J. W. Huckabee,
editors. Mercury pollution: integration and synthesis. Lewis,
Boca Raton, FL, pp. 305-312.
Hacon, S., P. Artaxo, F. Gerab, M. A. Yamasoe, R. C. Campos,
L. F. Conti, and L. D. De Lacerda. 1995. Atmospheric
mercury and trace elements in the region of Alta Floresta in
the Amazon Basin. Water, Air, and Soil Pollution 80:273-283.
Haitzer, M., G. R. Aiken, and J. N. Ryan. 2002. Binding of
mercury(II) to dissolved organic matter: the role of the
mercury-to-DOM concentration ratio. Environmental Science
and Technology 36:3564-3570.
Håkansson, L., Å. Nilsson, and T. Andersson. 1990. Mercury in
fi sh in Swedish lakes—linkages to domestic and European
sources of emission. Water, Air and Soil Pollution 50:171-191.
Hall, B. D., and V. L. St. Louis. 2004. Methylmercury and total
mercury in plant litter decomposing in upland forests and
fl ooded landscapes. Environmental Science and Technology
38:5010-5021.
Harmon, S. M., J. K. King, J. B. Gladden, G. T. Chandler,
and L. A. Newman. 2004. Methylmercury formation in a
wetland mesocosm amended with sulfate. Environmental
Science and Technology 38:650-656.
Harris, R. C., J. W. M. Rudd, M. Amyot, C. L. Babiarz, K. G. Beaty,
P. J. Bla nc h fi eld, R. A. Bodaly, B. A. Branfi reun, C. C. Gilmour,
J. A. Graydon, A. Heyes, H. Hintelmann, J. P. Hurley, C. A.
Kelly, D. P. Krabbenhoft, S. E. Lindberg, R. P. Mason, M. J.
Paterson, C. L. Podemski, A. Robinson, K. A. Sandilands, G.
R. Southworth, V. L. St. Louis, and M. T. Tate. 2007. Whole-
ecosystem study shows rapid fi sh-mercury response to changes
in mercury deposition. Proceedings of the National Academy of
Sciences of the United States of America 104:16586 -16591.
Heyes, A., T. R. Moore, and J. W. M. Rudd. 1998. Mercury and
methylmercury in decomposing vegetation of a pristine
and impounded wetland. Journal of Environmental Quality
27:591-599.
Hintelmann, H., R. Harris, A. Heyes, J. P. Hurley, C. A.
Kelly, D. P. Krabbenhoft, S. Lindberg, J. W. M. Rudd, K. J.
Scott, and V. L. St. Louis. 2002. Reactivity and mobility
of new and old mercury deposition in a boreal forest
ecosystem during the fi rst year of the METAALICUS study.
Environmental Science and Technology 36:5034-5040.
Holmes, J., and D. Lean. 2006. Factors that infl uence
methylmercury fl ux rates from wetland sediments. Science
of the Total Environment 368:306-319.
Hultberg, H., J. Munthe, and Åkeiverfeldt. 1995. Cycling of
methyl mercury and mercury — Responses in the forest
roof catchment to three years of decreased atmospheric
deposition. Water, Air and Soil Pollution 80:415-424.
Huntington, T. G. 2006. Evidence for intensifi cation of
the global water cycle: Review and synthesis. Journal of
Hydrology 319:83-95.
Hurley, J. P., J. M. Benoit, C. L. Babiarz, M. M. Shafer, A. W.
Andren, J. R. Sullivan, R. Hammond, and D. A. Webb. 1995.
Infl uences of watershed characteristics on mercury levels
in Wisconsin rivers. Environmental Science and Technology
29:1867-1875.
Hurley, J. P., S. E. Cowell, M. M. Shafer, and P. E. Hughes.
1998. Partitioning and transport of total and methyl
mercury in the Lower Fox River, Wisconsin. Environmental
Science and Technology 32:1424-1432.
Iverfeldt, Å. 1991. Occurrence and turnover of atmospheric
mercury over the Nordic countries. Water, Air, and Soil
Pollution 56:251-265.
Jensen, S., and A. Jernelov. 1969. Biological methylation of
mercury in aquatic organisms. Nature 223:753-754.
Jeremiason, J. D., D. R. Engstrom, E. B. Swain, E. A. Nater,
B. M. Johnson, J. E. Almendinger, B. A. Monson, and
R. K. Kolka. 2006. Sulfate addition increases methylmercury
production in an experimental wetland. Environmental
Science and Technology 40:3800-3806.
Johansson, K., M. Aastrup, A. Andersson, L. Bringmark, and A.
Iverfeldt. 1991. Mercury in Swedish forest soils and waters —
Assessment of critical load. Water, Air and Soil Pollution
56:267-281.
Johansson, K., A. Andersson, and T. Andersson. 1995. Regional
accumulation pattern of heavy metals in lake sediments
and forest soils in Sweden. Science of the Total Environment
160 -161:373 -380.
Johansson, K., B. Bergbäck, and G. Tyler. 2001. Impact of
atmospheric long range transport of lead, mercury and
cadmium on the Swedish forest environment. Water, Air
and Soil Pollution: Focus 1:279-297.
Johnels, A. G., T. Westermark, W. Berg, P. I. Persson, and
B. Sjostrand. 1967. Pike (Esox Lucius L.) and some other
aquatic organisms in Sweden as indicators of mercury
contamination in the environment. Oikos 18:323-333.
Johnson, D. W., J. A. Benesch, M. S. Gustin, D. S. Schorran,
S. E. Lindberg, and J. S. Coleman. 2003. Experimental
evidence against diffusion control of Hg evasion from soils.
The Science of the Total Environment 304:175-184.
Kahl, J., S. Nelson, I. Fernandez, T. Haines, S. Norton, G.
Wiersma, G. Jacobson, A. Amirbahman, K. Johnson,
M. Schauffl er, L. Rustad, K. Tonnessen, R. Lent, M.
Bank, J. Elvir, J. Eckhoff, H. Caron, P. Ruck, J. Parker, J.
Campbell, D. Manski, R. Breen, K. Sheehan, and A. Grygo.
2007. Watershed nitrogen and mercury geochemical
fl uxes integrate landscape factors in long-term research
watersheds at Acadia National Park, Maine, USA.
Environmental Monitoring and Assessment 126:9-25.
Kamman, N. C., N. M. Burgess, C. T. Driscoll, H. A. Simonin,
W. Goodale, J. Linehan, R. Estabrook, M. Hutcheson, A.
Major, A. M. Scheuhammer, and D. A. Scruton. 2005.
Mercury in freshwater fi sh of northeast North America—A
geographic perspective based on fi sh tissue monitoring
databases. Ecotoxicology 14:163 -180.
Kamman, N. C., and D. R. Engstrom. 2002. Historical and
present fl uxes of mercury to Vermont and New Hampshire
lakes inferred from 210 Pb dated sediment cores. Atmospheric
Environment 36:1599-1609.
King, J. K., J. E. Kostka, M. E. Frischer, F. M. Saunders, and
R. A. Jahnke. 2001. A quantitative relationship that
demonstrates mercury methylation rates in marine
sediments are based on the community composition and
activity of sulfate-reducing bacteria. Environmental Science
and Technology 35:2491-2496.
Kolka, R. K., E. A. Nater, D. F. Grigal, and E. S. Verry. 1999.
Atmospheric inputs of mercury and organic carbon into a
Search WWH ::




Custom Search