Biomedical Engineering Reference
In-Depth Information
in correct diagnosis. It is this key requirement that we believe will continue
to motivate further research in this field using CI techniques.
References
Ahlstrom, M. and W. Thompkins (1983). Automated high-speed analysis of
holter tapes in microcomputers. IEEE Transactions on Biomedical Engi-
neering 30 , 651-657.
al Fahoum, A. and I. Howitt (1999). Combined wavelet transformation and
radial basis neural networks for classifying life-threatening cardiac arrhyth-
mias. Medical and Biological Engineering and Computing 37(5) , 566-573.
American Heart Association. AHA Database. ECRI, PA.
Anant, K., F. Dowla, and G. Rodrigue (1995). Vector quantization of ECG
wavelet coe cients. IEEE Signal Processing Letters 2(7) , 129-131.
Andreao, R., B. Dorizzi, and J. Boudy (2006). ECG signal analysis through
hidden Markov models. IEEE Transactions on Biomedical Engineer-
ing 53(8) , 1541-1549.
Balda, R. (1977). The HP ECG analysis program. In Trends in Computer
Processed Electrocardiograms, J. H. van Bemnel and J. L. Williams (Eds.),
pp. 197-205, Amsterdam: North Holland.
Barro, S., M. Fernandez-Delgado, J. Vila-Sobrino, C. Regueiro, and
E. Sanchez (1998). Classifying multichannel ECG patterns with an adaptive
neural network. IEEE Engineering in Medicine and Biology Magazine 17 ,
45-55.
Bemmel, J. and J. Williams (1990). Standardization and validation of medi-
cal decision support systems: the CSE project. Methods of Information in
Medicine 29 , 261-262.
Biel, L., O. Pettersson, L. Philipson, and P. Wlde (2001). ECG analysis: a new
approach in human identification. IEEE Transactions on Instrumentation
and Measurement 50(3) , 808-812.
Bortolan, G., C. Brohet, and S. Fusaro (1996). Possibilities of using neural
networks for ECG classification. Journal of Electrocardiolgy 29 , 10-16.
Bortolan, G. and J. Willems (1993). Diagnostic ECG classification based on
neural networks. Journal of Electrocardiolgy 26 , 75-79.
Brennan, M., M. Palaniswami, and P. Kamen (2001a). Do existing measures
of Poincare plot geometry reflect nonlinear features of heart rate variability?
IEEE Transactions on Biomedical Engineering 48(11) , 1342-1347.
Brennan, M., M. Palaniswami, and P. Kamen (2001b). Distortion proper-
ties of the interval spectrum of IPFM generated heartbeats for heart rate
variability analysis. IEEE Transactions on Biomedical Engineering 48(11) ,
1251-1264.
Brennan, M., M. Palaniswami, and P. Kamen (2002). Poincare plot interpre-
tation using a physiological model of HRV based on a network of oscillators.
 
Search WWH ::




Custom Search