Agriculture Reference
In-Depth Information
Simpson G. The autonomous pathway: epigenetic and post-transcriptional gene regulation in the
control of Arabidopsis flowering time. Curr Opin Plant Biol. 2004;7(5):570-4.
Simpson GG, Gendall AR, Dean C. When to switch to flowering. Annu Rev Cell Dev Biol.
1999;15:519-50.
Song YH, et al. FKF1 conveys timing information for CONSTANS stabilization in photoperiodic
flowering. Science. 2012;336(6084):1045-9.
Soon FF, et al. Molecular mimicry regulates ABA signaling by SnRK2 kinases and PP2C phos-
phatases. Science. 2012;335(6064):85-8.
Srivastava AK, et al. An analysis on citrus flowering-A review. Agric Rev Agri Res Commun
Centre India. 2000;21(1):1-15.
Su Z, et al. Flower development under drought stress: morphological and transcriptomic
analyses reveal acute responses and long-term acclimation in arabidopsis. Plant Cell.
2013;25(10):3785-807.
Suarez-Lopez P, et al. CONSTANS mediates between the circadian clock and the control of flow-
ering in Arabidopsis. Nature. 2001;410(6832):1116-20.
Sussex I. Developmental programming of the shoot meristem. Cell. 1989;56(2):225-9.
Suzuki H, et al. Differential expression and affinities of Arabidopsis gibberellin receptors can
explain variation in phenotypes of multiple knock-out mutants. Plant J. 2009;60(1):48-55.
Suzuki M, et al. Viviparous1 alters global gene expression patterns through regulation of abscisic
acid signaling. Plant Physiol. 2003;132(3):1664-77.
Tiwari SB et al. The flowering time regulator CONSTANS is recruited to the FLOWERING
LOCUS T promoter via a uniquecis-element. New Phytol 2010;1-10.
Toh S, et al. High temperature-induced abscisic acid biosynthesis and its role in the inhibition of
gibberellin action in Arabidopsis seeds. Plant Physiol. 2008;146(3):1368-85.
Umezawa T et al. Genetics and phosphoproteomics reveal a protein phosphorylation network
in the abscisic acid signaling pathway in arabidopsis thaliana. Science Signal 2013;6(270),
p.rs8.
Umezawa T, et al. Molecular basis of the core regulatory network in ABA responses: sensing,
signaling and transport. Plant Cell Physiol. 2010;51(11):1821-39.
Umezawa T et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein
kinases in Arabidopsis. Proc Natl Acad Sci USA 2009;106(41):17588-593.
Uno Y, et al. Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-
dependent signal transduction pathway under drought and high-salinity conditions. Proc Nat
Acad Sci USA. 2000;97(21):11632-7.
Valverde F, et al. Photoreceptor regulation of CONSTANS protein in photoperiodic flowering.
Science. 2004;303(5660):1003-6.
Verslues PE, Juenger TE. Drought, metabolites, and Arabidopsis natural variation: a promising
combination for understanding adaptation to water-limited environments. Curr Opin Plant
Biol. 2011;14(3):240-5.
Vlad F, et al. Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by
abscisic acid in arabidopsis. Plant Cell. 2009;21(10):3170-84.
Wahl V, et al. Regulation of flowering by trehalose-6-phosphate signaling in arabidopsis thaliana.
Science. 2013;339(6120):704-7.
Wang J-W, et al. miR156-Regulated SPL transcription factors define an endogenous flowering
pathway in arabidopsis thaliana. Cell. 2009;138(4):738-49.
Wang P et al. Quantitative phosphoproteomics identifies SnRK2 protein kinase sub-
strates and reveals the effectors of abscisic acid action. Proc Natl Acad Sci USA
2013a;110(27):11205-10.
Wang Y, et al. The inhibitory effect of ABA on floral transition is mediated by ABI5 in
Arabidopsis. J Exp Bot. 2013b;64(2):675-84.
Weiss D, Ori N. Mechanisms of cross talk between gibberellin and other hormones. Plant
Physiol. 2007;144(3):1240-6.
Search WWH ::




Custom Search