Environmental Engineering Reference
In-Depth Information
Wignall, P. B. and Twitchett, R. J. (2002). Extent, duration, and nature of the Permian
-
Triassic superanoxic event. Geological Society of America Special Paper , 356,
395 - 413.
Wignall, P. B., Newton, R. J. and Brook
eld, M. E. (2005). Pyrite framboid evidence for
oxygen-poor deposition during the Permian
Triassic crisis in Kashmir. Palaeogeog-
raphy, Palaeoclimatology, Palaeoecology , 216, 183
-
188.
Wilkin, R. T., Barnes, H. L. and Brantley, S. L. (1996). The size distribution of framboidal
pyrite in modern sediments: an indicator of redox conditions. Geochimica et Cosmo-
chimica Acta , 60, 3897
-
3912.
Winguth, A. M. E. and Maier-Reimer, E. (2005). Causes of the marine productivity and
oxygen changes associated with the Permian
-
Triassic boundary; a reevaluation with
ocean general circulation models. Marine Geology , 217, 283
-
304.
-
Winguth, C. and Winguth, A. M. E. (2012). Simulating Permian
Triassic oceanic anoxia
distribution: implications for species extinction and recovery. Geology , 40, 127
-
130.
Woods, A. D., Bottjer, D. J., Mutti, M. and Morrison, J. (1999). Lower Triassic large sea-
-
floor carbonate cements: their origin and a mechanism for the prolonged biotic
recovery from the end-Permian mass extinction. Geology , 27, 645
648.
-
98/95 Mo as local and global
redox proxies during mass extinction events. Chemical Geology , 324
Zhou, L., Wignall, P. B., Su, J. et al . (2012). U/Mo ratios and
δ
325,99
107.
-
-
Search WWH ::




Custom Search