Environmental Engineering Reference
In-Depth Information
Klichuvskoi 13
Kizimen 13
Karymsky 13
Eyjafjallajökull 9,13
Kasatochi 8,13
Mutnovsky
Gorely 12,18
Stromboli 5
Mt
Redoubt 13,15
Mt Etna,
e.g. 3,4,5,6
Sarychev 13
Soufrierè Hills 1,5
Sakurajima 2
Popocatépetl 18
Pacaya 11
Masaya 5
San Cristobal 18
Nevado del Ruiz 13
Galeras
Villarica 5
Puyehue-Cordón Caulle 17
Dallafilla, Nabro 13
Ambrym 7,13
Nyiragongo 16
Mt Erebus 10
Figure 8.1 World map of sites where spectroscopic BrO measurements were
performed. 1 Bobrowski et al ., 2003 ; 2 Lee et al ., 2005 ; 3 Oppenheimer et al ., 2006 ;
4 Bobrowski et al ., 2007 ; 5 Bobrowski and Platt, 2007 ; 6 Louban et al ., 2009 ; 7 Bani
et al ., 2009 ;
8 Theys et al ., 2009 ;
9 Heue et al ., 2011 ;
10 Boichu et al ., 2011 ;
11 Vogel, 2011 ;
12 Bobrowski et al ., 2012 ;
13 Hörmann et al ., 2013 ;
14 Lübcke
15 Kelly et al ., 2013 ;
16 Bobrowski et al ., in press;
17 Theys et al .,
et al ., 2013;
2014 ; 18 this work.
8.2.1 The origin of volcanic halogen species
The source of volcanic halogen emissions can be divided into two categories:
(1)
'
deep ' volcanic sources, which are associated with melt generation, evolution
and exsolution of vapour and/or hydrosaline
fluids, and
(2) shallow, more secondary sources, which include, e.g., re-volatilisation of
seawater, or other crustal
fluids; and thermal decomposition of hydrothermal
deposits inside the volcano.
The relative importance of both sources still needs to be investigated. Volcanic
halogen
fluxes to the atmosphere are most commonly estimated by two
approaches:
(1) petrological methods (namely melt inclusion studies) on erupted products, and
(2) measurements of halogen to SO 2 ratios combined with SO 2 -
ux measurements
at active or quiescent degassing volcanoes. Both methods have advantages and
disadvantages.
Search WWH ::




Custom Search