Civil Engineering Reference
In-Depth Information
Solution
For the first mode, we have
S 11 = A (1) T [ M ] A (1) = [ 11
m 00
0 m 0
00 m
1
.
4325
2
.
0511 ]
.
1
4325
2
.
0511
4404 m
so the fi rs t modal amplitude vector is normalized by dividing each term by S 11 =
3 . 3824 m , which gives the normalized vector as
=
11
.
0 . 2956
0
A (1) =
1
m
.
4289
0
.
6064
Applying the same procedure to the modal amplitude vectors for the second and third
modes gives
0 . 6575
0
0 . 6930
A (2) =
A (3) =
1
m
1
m
.
.
5618
0
7124
0
.
3550
0
.
0782
and the normalized modal matrix is
0 . 2956
0 . 6575
0 . 6930
1
m
[ A ]
=
.
.
.
0
4289
0
5618
0
7124
0
.
6064
0
.
3550
0
.
0782
To verify Equation 10.109, we form the triple product
0 . 2956
0 . 4289
0 . 6064
m 00
0 m 0
00 m
1
m
[ A ] T [ M ][ A ]
=
.
.
.
0
6575
0
5618
0
3550
0
.
6930
0
.
7124
0
.
0782
=
0 . 2956
0 . 6575
0 . 6930
100
010
001
×
.
.
.
0
4289
0
5618
0
7124
0
.
6064
0
.
3550
0
.
0782
as expected.
The triple product with respect to the stiffness matrix is
0 . 2956
0 . 4289
0 . 6064
20
3
k
m
[ A ] T [ K ][ A ]
=
.
.
.
0
6575
0
5618
0
3550
23
1
0
.
6990
0
.
7124
0
.
0782
0
11
0 . 2956
0 . 6575
0 . 6990
×
.
.
.
0
4289
0
5618
0
7124
0
.
6064
0
.
3550
0
.
0782
which evaluates to
0 . 1532
0
0
2
1
00
k
m
[ A ] T [ K ][ A ]
=
=
.
0
1
2912
0
2
2
0
0
0
0
5
.
0557
00
2
3
Search WWH ::




Custom Search