Civil Engineering Reference
In-Depth Information
0 . 6327
0 . 1003
0 . 2585
0 . 1003
k (4) =
0 . 1003
0 . 6327
0 . 1003
0 . 2585
0 . 2585
0 . 1003
0 . 6906
0 . 0713
0 . 1003
0 . 2585
0 . 0713
0 . 6906
Utilizing the direct assembly-superposition method with the element-to-global node
assignment relations, the global conductance matrix is
0 . 6906
0 . 1003
0
0 . 0713
0 . 2585
0
0
0
0
0 . 1003
1 . 2654
0 . 1003
0 . 2585
0 . 2006
0 . 2585
0
0
0
0
0 . 1003
0 . 6906
0
0 . 2585
0 . 0713
0
0
0
0 . 0713
0 . 2585
0
1 . 3812
0 . 2006
0
0 . 0713
0 . 2585
0
[ K ] =
0 . 2585
0 . 2006
0 . 2585
0 . 2006
2 . 5308
0 . 2006
0 . 2585
0 . 2006
0 . 2585
0
0 . 2585
0 . 0713
0
0 . 2006
1 . 3812
0
0 . 2585
0 . 0713
0
0
0
0 . 0713
0 . 2585
0
0 . 7484
0 . 2585
0
0
0
0
0 . 2585
0 . 2006
0 . 2585
0 . 2585
1 . 3812
0 . 0713
0
0
0
0
0 . 2585
0 . 0713
0
0 . 0713
0 . 7484
The nodal temperature vector is
180
180
180
T 4
T 5
T 6
T 7
T 8
T 9
{ T }=
and we have explicitly incorporated the prescribed temperature boundary conditions.
Assembling the global force vector, noting that no internal heat is generated, we
obtain
17
.
7084
+
F 1
35
.
4168
+
F 2
17
.
7084
+
F 3
35 . 4168
47 . 2224
35 . 4168
23 . 6112
35 . 4168
23 . 6112
{ F }=
Btu/hr
where we use F 1 , F 2 , and F 3 as general notation to indicate that these are unknown
“reaction” forces. In fact, as will be shown, these terms are the heat flux components at
nodes 1, 2, and 3.
Search WWH ::




Custom Search