Civil Engineering Reference
In-Depth Information
4 EI z
L
= k (2)
24
K 46
=
96 EI z
L 3
= k (2)
33
K 55
=
24 EI z
L 2
= k (2)
34
K 56
=
8 EI z
L
= k (2)
44
K 66
=
Using the general form
[ K ] { U }={ F }
we obtain the system equations as
96
24 L
96
24 L
0
0
v 1
1
v 2
2
v 3
3
F 1
M 1
F 2
M 2
F 3
M 3
8 L 2
24 L
4 L 2
24 L
0
0
EI z
L 3
96
24 L
192
0
96
24 L
=
24 L
4 L 2
0
16 L 2
24 L
4 L 2
0
0
96
24 L
96
24 L
0
0
24 L
4 L 2
24 L
8 L 2
Invoking the boundary conditions v 1 = 1 = v 3 = 0 , the reduced equations become
=
192
0
24 L
v 2
2
3
P
0
0
EI z
L 3
0 L 2
4 L 2
24 L
4 L 2
8 L 2
Yielding the nodal displacements as
7 PL 3
768 EI z
PL 2
128 EI z
PL 2
32 EI z
v 2 =
2 =
3 =
The deformed beam shape is shown in superposition with a plot of the undeformed shape
with the displacements noted in Figure 4.7c. Substitution of the nodal displacement val-
ues into the constraint equations gives the reactions as
EI z
L 3
11 P
16
F 1 =
( 96 v 2 + 24 L 2 ) =
EI z
L 3
5 P
16
F 3 =
( 96 v 2 24 L 2 24 L 3 ) =
EI z
L 3
3 PL
16
( 24 Lv 2 + 4 L 2
M 1 =
2 ) =
Checking the overall equilibrium conditions for the beam, we find
F y
11 P
16 P +
5 P
16 = 0
=
Search WWH ::




Custom Search