Graphics Reference
In-Depth Information
y 2 z 3 ( rx 1 + sx 2 + tx 3 )+ x 2 y 3 ( rz 1 + sz 2 + tz 3 )+ x 3 z 2 ( ry 1 + sy 2 + ty 3 )
−y 3 z 2 ( rx 1 + sx 2 + tx 3 ) − x 3 y 2 ( rz 1 + sz 2 + tz 3 ) − x 2 z 3 ( ry 1 + sy 2 + ty 3 )
1
6
V =
r ( x 1 y 2 z 3 + x 2 y 3 z 1 + x 3 y 1 z 2
x 1 y 3 z 2
x 3 y 2 z 1
x 2 y 1 z 3 )+
= 1
6
s ( x 2 y 2 z 3 + x 2 y 3 z 2 + x 3 y 1 z 2
x 2 y 3 z 2
x 3 y 1 z 2
x 2 y 2 z 3 )+
t ( x 3 y 2 z 3 + x 2 y 3 z 3 + x 3 y 3 z 2
x 3 y 3 z 2
x 3 y 2 z 3
x 2 y 3 z 3 )
and simplifies to
x 1
y 1
z 1
V = 1
6 r
x 2
y 2
z 2
x 3
y 3
z 3
This states that the volume of the smaller tetrahedron is r times the volume
of the larger tetrahedron V T ,where r is the barycentric coordinate modifying
the vertex not included in the volume. By a similar process we can develop
volumes for the other tetrahedra:
V ( P, P 2 ,P 4 ,P 3 )= rV T
V ( P, P 1 ,P 3 ,P 4 )= sV T
V ( P, P 1 ,P 2 ,P 4 )= tV T
V ( P, P 1 ,P 2 ,P 3 )= uV T
where r + s + t + u =1.
Similarly, the barycentric coordinates of a point inside the volume sum to
unity.
Let's test the above statements with an example.
Figure 11.25 shows a tetrahedron and a point P 3 , 3 , 3 located within
its interior.
The volume of the tetrahedron V T is
001
100
010
V T = 1
6
= 1
6
Y
P 3
1
P
P 4
P 2
P 1
1
1
X
Z
Fig. 11.25. A tetrahedron.
Search WWH ::




Custom Search