Graphics Reference
In-Depth Information
Table 9.2. Expansion of the terms t and (1 − t )
i
n
0
1
2
3
4
1
t
(1 t)
2
t 2
t(1 t)
(1 t) 2
3
t 3
t 2 (1 t)
t(1 t) 2
(1 t) 3
4
t 4
t 3 (1 t)
t 2 (1 t) 2
t(1 t) 3
(1 t) 4
Table 9.3. The Bernstein polynomial terms
i
n
0
1
2
3
4
1
1t
1(1 − t )
2
1t 2
2t(1
t)
1(1
t) 2
3
1t 3
3t 2 (1 t)
3t(1 t) 2
1(1 t) 3
4
1t 4
4t 3 (1 t)
6t 2 (1 t) 2
4t(1 t) 3
1(1 t) 4
1.2
1
0.8
0.6
0.4
0.2
0
0
0.1 0.2 0.3 0.4 0.5
t
0.6 0.7 0.8 0.9
1
Fig. 9.3. The graphs of the quadratic Bernstein polynomials.
t ) 2
graph starts at 1 and decays to zero, whereas the t 2 graph starts at zero and
rises to 1. The 2 t (1
Figure 9.3 shows the graphs of the three polynomial terms of (9.8). The (1
t ) graph starts at zero, reaches a maximum of 0.5 and
returns to zero. Thus the central polynomial term has no influence at the
end-points where t =0and t =1.
We can use these three terms to interpolate between a pair of values as
follows:
V = V 1 (1 − t ) 2 +2 t (1 − t )+ V 2 t 2
(9.9)
If V 1 = 1 and V 2 = 3 we obtain the curve shown in Figure 9.4. But there
is nothing preventing us from multiplying the middle term 2 t (1
t )byany
arbitrary number V c :
t ) 2 + V c 2 t (1
t )+ V 2 t 2
V = V 1 (1
(9.10)
 
Search WWH ::




Custom Search