Biomedical Engineering Reference
In-Depth Information
141. Corsetti A, Settanni L, Van Sinderen D (2004) Characterization of bacteriocin-like inhibitory
substances (BLIS) from sourdough lactic acid bacteria and evaluation of their in vitro and in
situ activity. J Appl Microbiol 96:521-534
142. Gänzle MG, Höltzel A, Walter J, Jung G, Hammes WP (2000) Characterization of reutericy-
clin produced by Lactobacillus reuteri LTH2584. Appl Environ Microbiol 66:4325-4333
143. Hurdle JG, Heathcott AE, Yan B, Lee RE (2011) Reuter;icyclin and related analogues kill
stationary phase Clostridium dif fi cile at achievable colonic concentrations. J Antimicrob
Chemother 66:1773-1776
144. Gänzle MG (2004) Reutericyclin: biological activity, mode of action, and potential applica-
tion. Appl Microbiol Biotechnol 64:326-332
145. Andreasen MF, Christensen LP, Meyer AS, Hansen A (2000) Content of phenolic acids and
ferulic acid dehydrodimers in 17 rye ( Secale cereale L.) varieties. J Agric Food Chem
48:2837-2842
146. Piber M, Koehler P (2005) Identification of dehydro-ferulic acid-tyrosine in rye and wheat:
evidence for a covalent cross-link between arabinoxylans and proteins. J Agric Food Chem
53:5276-5284
147. Boskov Hansen H, Andreasen MS, Nielsen MM, Larsen LM, Bach Knudsen KE, Meyer AS,
Cristensen LP, Hansen A (2002) Changes in dietary fibre, phenolic acids, and activity of
endodenous enzymes during rye bread-making. Eur Food Res Technol 214:33-42
148. Taylor JR, Schober TJ, Bean S (2006) Novel and non-food uses for sorghum and millets.
J Cereal Sci 44:252-271
149. Dykes L, Rooney LW (2006) Sorghum and millet phenols and antioxidants. J Cereal Sci
44:236-251
150. Svensson L, Sekwati Monang B, Lopez-Lutz D, Schieber A, Gänzle MG (2010) Phenolic
acids and flavonoids in non-fermented and fermented red sorghum ( Sorghum bicolor (L.)
Moench). J Agric Food Chem 58:9214-9220
151. Rodriguez H, Curiel JA, Landete JM, de las Rivas B, de Felipe FL, Gómez-Cordovés C, Mancheno
JM, Munoz R (2009) Food phenolics and lactic acid bacteria. Int J Food Microbiol 132:79-90
152. Marazza JA, Garro MS, de Giori GS (2009) Aglycone production by Lactobacillus rhamno-
sus CRL981 during soymilk fermentation. Food Microbiol 26:333-339
153. Avila M, Jaquet M, Moine D, Requena T, Pelaez C, Arigoni F, Jankovic J (2009) Physiological
and biochemical characterization of the two a-L-rhamnosidases of Lactobacillus plantarum
NCC245. Microbiology 155:2739-2749
154. Curiel JA, Rodriguez H, Acebron I, Mancheno JM, delas Rivas B, Munoz R (2009) Pdoruction
and physiochemical properties of recombinant Lactobacillus plantarum tannase. J Agric
Food Chem 57:6224-6230
155. De las Rivas B, Rodriguez H, Curiel JA, Landete JM, Munoz R (2009) Meolcular screening
of wine lactic acid bacteria degrading hydroxycinnamic acids. J Agric Food Chem
57:490-494
156. Van Beek S, Priest FG (2000) Decarboxylation of substituted cinnamic acids by lactic acid
bacteria isolated during malt whisky fermentation. Appl Environ Microbiol 66:5322-5328
157. Sanchez-Maldonado AF, Schieber A, Gänzle MG (2011) Structure-function relationships of
the antibacterial activity of phenolic acids and their metabolism by lactic acid bacteria. J Appl
Microbiol 111:1176-1184
158. Campos FM, Couto JA, Figueiredo AR, Toth IV, Rangel AOSS, Hogg T (2009) Cell mem-
brane damage induced by phenolic acids on wine lactic acid bacteria. Int J Food Microbiol
135:144-151
159. Moroni AV, Dal Bello F, Arendt EK (2009) Sourdough in gluten-free bread-making: an acient
technology to solve a novel issue? Food Microbiol 26:676-684
160. Elshof MBW, Veldink GA, Vliegenthart JFG (1998) Biocatalytic hydroxylation of linoleic
acid in a double-fed batch system with lipoxygenase and cysteine. Fett-Lipid 246 - 251
161. Fuqua C, Winans SC, Greenberg EP (1996) Census and consensus in bacterial ecosystems:
the LuxR-LuxI family of quorum-sensing transcriptional regulators. Ann Rev Microbiol
50:727-751
Search WWH ::




Custom Search