Biomedical Engineering Reference
In-Depth Information
63. Christensen JF, Dudley EG, Pederson JA, Steele JL (1999) Peptidases and amino acid
catabolism in lactic acid bacteria. Antonie Van Leeuwenhoek 76:217-246
64. Su MSW, Schlicht S, Gänzle MG (2011) Contribution of glutamate decarboxylase in
Lactobacillus reuteri to acid resistance and persistence in sourdough fermentation. Microb
Cell Factories 10(suppl1):S8
65. Fernandez M, Zuniga M (2006) Amino acid catabolic pathoways of lactic acid bacteria. Crit
Rev Microbiol 32:155-183
66. Kieronczyk A, Skeie S, Olsen K, Langsrud T (2001) Metabolism of amino acids by resting
cells of non-starter lactobacilli in relation to flavour development in cheese. Int Dairy J
11:217-224
67. Tonon T, Bourdineaud JP, Lonvaud-Funel A (2001) The arcABC gene cluster encoding the
arginine deiminase pathway of Oenococcus oeni , and arginine induction of a CRP-like gene.
Res Microbiol 152:653-661
68. Hammes WP, Hertel C (2006) The genera Lactobacillus and Carnobacterium . Prokaryotes
4:320-403
69. De Angelis M, Mariotti L, Rossi J, Servili M, Fox PF, Rollàn G, Gobbetti M (2002) Arginine
catabolism by sourdough lactic acid bacteria: Purification and characterization of the arginine
deiminase (ADI) pathway enzymes from Lactobacillus sanfranciscensis CB1. Appl Environ
Microbiol 68:6193-6201
70. Vrancken G, Rimaux T, Wouters D, Leroy F, De Vuyst L (2009) The arginine deiminase
pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress condi-
tions of both temperature and salt. Food Microbiol 26:720-727
71. Vermeulen N, Gänzle MG, Vogel RF (2007) Glutamine deamidation by cereal-associated
lactic acid bacteria. J Appl Microbiol 103:1197-1205
72. Weingand-Ziadé A, Gerber-Dé Combay C, Affolter M (2003) Functional characterization of
a salt- and thermotolerant glutaminase from Lactobacillus rhamnosus . Enzyme Microb
Technol 32:862-867
73. Tanous C, Kieronczyk A, Helinck S, Chambellon E, Yvon M (2002) Glutamate dehydroge-
nase activity: a major criterion for the selection of flavour-producing lactic acid bacteria
strains. Antonie Van Leeuwenhoek 82:271-278
74. Vermeulen N, Gänzle MG, Vogel RF (2006) nfluence of peptide supply and co-substrates on
phenylalanine metabolism of Lactobacillus sanfranciscensis DSM20451T and Lactobacillus
plantarum TMW1.468. J Agric Food Chem 54:3832-3839
75. Coda R, Rizzello CG, Gobbetti M (2010) Use of sourdough fermentation and pseudo-cereals
and leguminous flours for the making of a functional bread enriched of g -aminobutyric acid
(GABA). Int J Food Microbiol 37:236-245
76. Stromeck A, Hu Y, Chen L, Gänzle MG (2011) Proteolysis and bioconversion of cereal pro-
teins to glutamate and g aminobutyrate in rye malt sourdoughs. J Agric Food Chem
59:1392-1399
77. Serrazanetti DI, Ndagijimana M, Sado-Kamdem SL, Corsetti A, Vogel RF, Ehrmann M,
Guerzoni ME (2011) Acid-stress mediated metabolic shift in Lactobacillus sanfranciscensis
LSCE1. Appl Environ Microbiol 77:2659-2666
78. Curtin ÁC, De Angelis M, Cipriani M, Corbo MR, McSweeney PLH, Gobbetti M (2001)
Amino acid catabolism in cheese-related bacteria: selection and study of the effects of pH,
temperature and NaCl by quadratic response surface methodology. J Appl Microbiol
91:312-321
79. De Angelis M, Curtin ÁC, McSweeney PLH, Faccia M, Gobbetti M (2002) Lactobacillus
reuteri DSM 20016: purification and characterization of a cystathionine g-lyase and use as
adjunct starter in cheese-making. J Dairy Res 69:255-267
80. Korakli M, Vogel RF (2006) Structure/function relationship of homopolysaccharide produc-
ing glycansucrases and therapeutic potential of their synthesised glycans. Appl Microbiol
Biotechnol 71:790-803
81. van Hijum SAFT, Kralj S, Ozimek LK, Kijkhuizen L, van Geel-Schutten IGH (2006)
Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic
acid bacteria. Microbiol Molec Biol Rev 70:157-176
Search WWH ::




Custom Search