Graphics Reference
In-Depth Information
Figure 4.18.
Parts of a homogeneous matrix.
1000
0700
0010
0000
1000
3100
0010
0001
Ê
ˆ
Ê
ˆ
1 000
0100
0 010
1351
Ê
ˆ
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
-
Ë
¯
Ë
¯
Ë
¯
(a)
(b)
(c)
1000
0700
0010
0005
1002
0103
0010
0001
Ê
ˆ
Ê
ˆ
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Á
˜
Ë
¯
Ë
¯
(d)
(e)
Figure 4.19.
Transformation examples.
transformation. Furthermore, computer hardware can be optimized to deal with 4 ¥
4 matrices to more than compensate for the inefficiency of computation issue men-
tioned above.
Let us look at the advantage of homogeneous coordinates in more detail. To see
the geometric power contained in a 4 ¥ 4 homogeneous matrix consider Figure 4.18.
The matrix can be divided into the four parts L, T, P, and S as shown, each of which
by itself has a simple geometric interpretation. The matrix corresponds to an affine
map if and only if P is zero and in that case we have a linear transformation defined
by L followed by a translation defined by T. If P is nonzero, then some plane will be
mapped to infinity. We illustrate this with the examples shown in Figure 4.19.
First, consider L. That matrix corresponds to a linear transformation of R 3 . If L
is a pure diagonal matrix, then we have a map that expands and/or contracts along
Search WWH ::




Custom Search