Chemistry Reference
In-Depth Information
[217] Branco-Price C, Kawaguchi R, Ferreira RB, Bailey-Serres J. Genome-wide analysis of
transcript abundance and translation in Arabidopsis seedlings subjected to oxygen
deprivation. Annals of Botany, 2005, 96(4):647-60
[218] Davenport R, James RA, Zakrisson-Plogander A, Tester M, Munns R. Control of
sodium transport in durum wheat. Plant Physiology, 2005, 137(3):807-18.
[219] Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ. Plant cellular and molecular
responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol. , 2000, 51:463-499.
[220] Chinnusamy V, Zhu JK, Sunkar R. Gene regulation during cold stress acclimation in
plants. Methods in Molecular Biol ogy, 2010, 639:39-55.
[221] Munns R, Tester M. Mechanisms of salinity tolerance. Annual Review of Plant Biology,
2008, 59:651-81.
[222] Mahajan S, Pandey GK, Tuteja N. Calcium- and salt-stress signaling in plants:
shedding light on SOS pathway. Arch Biochem Biophys. , 2008, 471(2):146-58.
[223] Gaxiola RA, Li J, Undurraga S, Dang LM, Allen GJ, Alper SL, Fink GR. Drought- and
salt-tolerant plants result from overexpression of the AVP1 H + -pump. Proc Natl Acad
Sci USA. , 2001, 98(20):11444-9.
[224] Zhang HX, Blumwald E. Transgenic salt-tolerant tomato plants accumulate salt in
foliage but not in fruit. Nature Biotechnol ogy, 2001, 19(8):765-8.
[225] Xu D, Duan X, Wang B, Hong B, Ho T, Wu R. Expression of a Late Embryogenesis
Abundant Protein Gene, HVA1, from Barley Confers Tolerance to Water Deficit and
Salt Stress in Transgenic Rice. Plant Physiology, 1996, 110(1):249-257.
[226] Brini F, Hanin M, Lumbreras V, Amara I, Khoudi H, Hassairi A, Pagès M, Masmoudi
K. Overexpression of wheat dehydrin DHN-5 enhances tolerance to salt and osmotic
stress in Arabidopsis thaliana. Plant Cell Reports, 2007, 26(11):2017-26.
[227] Golldack D, Lüking I, Yang O. Plant tolerance to drought and salinity: stress
regulating transcription factors and their functional significance in the cellular
transcriptional network. Plant Cell Reports, 2011, 30(8):1383-91.
[228] Chinnusamy V, Zhu J, Zhu JK. Cold stress regulation of gene expression in plants.
Trends Plant Sci. , 2007, 12(10):444-51.
[229] Lee BH, Henderson DA, Zhu JK. The Arabidopsis cold-responsive transcriptome and
its regulation by ICE1. The Plant Cell, 2005, 17(11):3155-75.
[230] Shinwari ZK, Nakashima K, Miura S, Kasuga M, Seki M, Yamaguchi-Shinozaki K,
Shinozaki K. An Arabidopsis gene family encoding DRE/CRT binding proteins
involved in low-temperature-responsive gene expression. Biochem Biophys Res
Commun. , 1998, 250(1):161-70.
[231] Medina J, Bargues M, Terol J, Pérez-Alonso M, Salinas J. The Arabidopsis CBF gene
family is composed of three genes encoding AP2 domain-containing proteins whose
expression Is regulated by low temperature but not by abscisic acid or dehydration.
Plant Physiology, 1999, 119(2):463-70.
[232] Hannah MA, Wiese D, Freund S, Fiehn O, Heyer AG, Hincha DK. Natural genetic
variation of freezing tolerance in Arabidopsis. Plant Physiology, 2006, 142(1):98-112.
Search WWH ::




Custom Search