Biomedical Engineering Reference
In-Depth Information
340. Virupaksha TK, Tarver H. The reaction of insulin with N-acetyl-Dl-homocysteine
thiolactone: some chemical and biological properties of the products. Biochemistry.
1964;3:1507-11.
341. Jalili S, Yousefi R, Papari MM, Moosavi-Movahedi AA. Effect of homocysteine thiolactone
on structure and aggregation propensity of bovine pancreatic insulin. Protein J. 2011;30
(5):299-307.
342. Yousefi R, Jalili S, Alavi P, Moosavi-Movahedi AA. The enhancing effect of homocysteine
thiolactone on insulin fibrillation and cytotoxicity of insulin fibril. Int J Biol Macromol.
2012;51(3):291-8.
343. O'Harte FP, Boyd AC, McKillop AM, Abdel-Wahab YH, McNulty H, Barnett CR, et al.
Structure, antihyperglycemic activity and cellular actions of a novel diglycated human
insulin. Peptides. 2000;21(10):1519-26.
344. Farah MA, Bose S, Lee JH, Jung HC, Kim Y. Analysis of glycated insulin by MALDI-TOF
mass spectrometry. Biochim Biophys Acta. 2005;1725(3):269-82.
345. Wemheuer WM, Benestad SL, Wrede A, Schulze-Sturm U, Wemheuer WE, Hahmann U,
et al. Similarities between forms of sheep scrapie and Creutzfeldt-Jakob disease are encoded
by distinct prion types. Am J Pathol. 2009;175(6):2566-73.
346. Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative
diseases: mechanisms and perspective. J Neurol Sci. 2012;317(1-2):1-5.
347. Stroylova YY, Chobert JM, Muronetz VI, Jakubowski H, Haertle T. N-homocysteinylation of
ovine prion protein induces amyloid-like transformation. Arch Biochem Biophys. 2012;526
(1):29-37.
348. Khodadadi S, Riazi GH, Ahmadian S, Hoveizi E, Karima O, Aryapour H. Effect of
N-homocysteinylation on physicochemical and cytotoxic properties of amyloid beta-peptide.
FEBS Lett. 2012;586(2):127-31.
349. Desai A, Mitchison TJ. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol.
1997;13:83-117.
350. Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA. Multiple isoforms of
human microtubule-associated protein tau: sequences and localization in neurofibrillary
tangles of Alzheimer's disease. Neuron. 1989;3(4):519-26.
351. Panda D, Samuel JC, Massie M, Feinstein SC, Wilson L. Differential regulation of microtu-
bule dynamics by three- and four-repeat tau: implications for the onset of neurodegenerative
disease. Proc Natl Acad Sci USA. 2003;100(16):9548-53.
352. Mandelkow EM, Schweers O, Drewes G, Biernat J, Gustke N, Trinczek B, et al. Structure,
microtubule interactions, and phosphorylation of
tau protein. Ann N Y Acad Sci.
1996;777:96-106.
353. Karima O, Riazi G, Khodadadi S, Aryapour H, Nasiri Khalili MA, Yousefi L, et al. Altered
tubulin assembly dynamics with N-homocysteinylated human 4R/1N tau in vitro. FEBS Lett.
2012;586(21):3914-9.
354. Stroylova YY, Zimny J, Yousefi R, Chobert JM, Jakubowski H, Muronetz VI, et al. Aggre-
gation and structural changes of alpha(S1)-, beta- and kappa-caseins induced by homocystei-
nylation. Biochim Biophys Acta. 2011;1814(10):1234-45.
355. Khazaei S, Yousefi R, Alavian-Mehr MM. Aggregation and fibrillation of eye lens crystallins
by homocysteinylation; implication in the eye pathological disorders. Protein J. 2012;31
(8):717-27.
356. Ferguson E, Parthasarathy S, Joseph J, Kalyanaraman B. Generation and initial characteriza-
tion of a novel polyclonal antibody directed against homocysteine thiolactone-modified low
density lipoprotein. J Lipid Res. 1998;39(4):925-33.
357. Perla-Kajan J, Stanger O, Luczak M, Ziolkowska A, Malendowicz LK, Twardowski T, et al.
Immunohistochemical detection of N-homocysteinylated proteins in humans and mice.
Biomed Pharmacother. 2008;62(7):473-9.
Search WWH ::




Custom Search