Biomedical Engineering Reference
In-Depth Information
220. Glowacki R, Bald E, Jakubowski H. An on-column derivatization method for the determina-
tion of homocysteine-thiolactone and protein N-linked homocysteine. Amino Acids. 2011;41
(1):187-94.
221. Senger B, Despons L, Walter P, Jakubowski H, Fasiolo F. Yeast cytoplasmic and mitochon-
drial methionyl-tRNA synthetases: two structural frameworks for identical functions. J Mol
Biol. 2001;311(1):205-16.
222. Cohn VH, Lyle J. A fluorometric assay for glutathione. Anal Biochem. 1966;14(3):434-40.
223. Mukai Y, Togawa T, Suzuki T, Ohata K, Tanabe S. Determination of homocysteine
thiolactone and homocysteine in cell cultures using high-performance liquid chromatography
with fluorescence detection. J Chromatogr B Analyt Technol Biomed Life Sci. 2002;767
(2):263-8.
224. Togawa T, Mukai Y, Ohata K, Suzuki T, Tanabe S. Measurement of homocysteine
thiolactone hydrolase activity using high-performance liquid chromatography with fluores-
cence detection and polymorphisms of paraoxonase in normal human serum. J Chromatogr B
Analyt Technol Biomed Life Sci. 2005;819(1):67-72.
225. Daneshvar P, Yazdanpanah M, Cuthbert C, Cole DE. Quantitative assay of plasma homocys-
teine thiolactone by gas chromatography/mass spectrometry. Rapid Commun Mass
Spectrom. 2003;17(4):358-62.
226. Chen SJ, Chang HT. Nile red-adsorbed gold nanoparticles for selective determination of
thiols based on energy transfer and aggregation. Anal Chem. 2004;76(13):3727-34.
227. Chen X, Zhou Y, Peng X, Yoon J. Fluorescent and colorimetric probes for detection of thiols.
Chem Soc Rev. 2010;39(6):2120-35.
228. Lim II, Ip W, Crew E, Njoki PN, Mott D, Zhong CJ, et al. Homocysteine-mediated reactivity
and assembly of gold nanoparticles. Langmuir. 2007;23(2):826-33.
229. Huang CC, Tseng WL. Role of fluorosurfactant-modified gold nanoparticles in selective
detection of homocysteine thiolactone:
remover and sensor. Anal Chem. 2008;80
(16):6345-50.
230. Reynolds NM, Lazazzera BA, Ibba M. Cellular mechanisms that control mistranslation. Nat
Rev Microbiol. 2010;8(12):849-56.
231. Fersht A. Structure and mechanism in protein science. New York, NY: WH Freeman and
Company; 2000.
232. Old JM, Jones DS. The aminoacylation of transfer ribonucleic acid. Recognition of methio-
nine by Escherichia coli methionyl-transfer
ribonucleic acid synthetase. Biochem J.
1977;165(2):367-73.
233. Fersht AR, Dingwall C. An editing mechanism for the methionyl-tRNA synthetase in the
selection of amino acids in protein synthesis. Biochemistry. 1979;18(7):1250-6.
234. Jakubowski H. Aminoacyl thioester chemistry of class II aminoacyl-tRNA synthetases.
Biochemistry. 1997;36(37):11077-85.
235. Zubay J. Biochemistry. 4th ed. Dubuque, IA: Wm. C. Brown; 1998.
236. Lewin B. Genes VIII. New York: Oxford University Press; 2004.
237. Jakubowski H. Synthesis of homocysteine thiolactone in normal and malignant cells. In:
Rosenberg IH, Graham I, Ueland PM, Refsum H, editors. Homocysteine metabolism: from
basic science to clinical medicine. Norwell, MA: Kluwer Academic; 1997. p. 157-65.
238. Kim HY, Ghosh G, Schulman LH, Brunie S, Jakubowski H. The relationship between
synthetic and editing functions of the active site of an aminoacyl-tRNA synthetase. Proc
Natl Acad Sci USA. 1993;90(24):11553-7.
239. Serre L, Verdon G, Choinowski T, Hervouet N, Risler JL, Zelwer C. How methionyl-tRNA
synthetase creates its amino acid recognition pocket upon L-methionine binding. J Mol Biol.
2001;306(4):863-76.
240. Jakubowski H. The synthetic/editing active site of an aminoacyl-tRNA synthetase: evidence
for binding of thiols in the editing subsite. Biochemistry. 1996;35(25):8252-9.
241. Nadarajan SP, Mathew S, Deepankumar K, Yun H. An in silico approach to evaluate the
polyspecificity of methionyl-tRNA synthetases. J Mol Graph Model. 2012;39C:79-86.
Search WWH ::




Custom Search